{ "cells": [ { "cell_type": "markdown", "id": "c5aaedf3", "metadata": {}, "source": [ "
| \n", " | sepal_length | \n", "sepal_width | \n", "petal_length | \n", "petal_width | \n", "type | \n", "label | \n", "
|---|---|---|---|---|---|---|
| 0 | \n", "5.1 | \n", "3.5 | \n", "1.4 | \n", "0.2 | \n", "setosa | \n", "0 | \n", "
| 1 | \n", "4.9 | \n", "3.0 | \n", "1.4 | \n", "0.2 | \n", "setosa | \n", "0 | \n", "
| 2 | \n", "4.7 | \n", "3.2 | \n", "1.3 | \n", "0.2 | \n", "setosa | \n", "0 | \n", "
| 3 | \n", "4.6 | \n", "3.1 | \n", "1.5 | \n", "0.2 | \n", "setosa | \n", "0 | \n", "
| 4 | \n", "5.0 | \n", "3.6 | \n", "1.4 | \n", "0.2 | \n", "setosa | \n", "0 | \n", "
| ... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
| 145 | \n", "6.7 | \n", "3.0 | \n", "5.2 | \n", "2.3 | \n", "virginica | \n", "2 | \n", "
| 146 | \n", "6.3 | \n", "2.5 | \n", "5.0 | \n", "1.9 | \n", "virginica | \n", "2 | \n", "
| 147 | \n", "6.5 | \n", "3.0 | \n", "5.2 | \n", "2.0 | \n", "virginica | \n", "2 | \n", "
| 148 | \n", "6.2 | \n", "3.4 | \n", "5.4 | \n", "2.3 | \n", "virginica | \n", "2 | \n", "
| 149 | \n", "5.9 | \n", "3.0 | \n", "5.1 | \n", "1.8 | \n", "virginica | \n", "2 | \n", "
150 rows × 6 columns
\n", "| \n", " | interarrival_std | \n", "interarrival_mean | \n", "interarrival_min | \n", "interarrival_max | \n", "interarrival_max_min_diff | \n", "interarrival_p10 | \n", "interarrival_p20 | \n", "interarrival_p25 | \n", "interarrival_p30 | \n", "interarrival_p40 | \n", "... | \n", "rtp_interarrival_max_min_R | \n", "rtp_interarrival_kurtosis | \n", "rtp_interarrival_skew | \n", "rtp_interarrival_moment3 | \n", "rtp_interarrival_moment4 | \n", "rtp_interarrival_len_unique_percent | \n", "rtp_interarrival_max_value_count_percent | \n", "rtp_interarrival_min_max_R | \n", "rtp_marker_sum_check | \n", "label | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "0.001927 | \n", "0.010000 | \n", "0.004951 | \n", "0.014423 | \n", "0.009472 | \n", "7.619953e-05 | \n", "8.045912e-05 | \n", "8.572698e-05 | \n", "9.030223e-05 | \n", "9.799051e-05 | \n", "... | \n", "0.500000 | \n", "-3.000000 | \n", "0.000000 | \n", "0.000000e+00 | \n", "0.000000e+00 | \n", "0.010000 | \n", "1.000000 | \n", "0.500000 | \n", "0 | \n", "Audio | \n", "
| 1 | \n", "0.000515 | \n", "0.020009 | \n", "0.019227 | \n", "0.021251 | \n", "0.002024 | \n", "1.931565e-04 | \n", "1.953020e-04 | \n", "1.958430e-04 | \n", "1.965890e-04 | \n", "1.985469e-04 | \n", "... | \n", "0.500000 | \n", "-3.000000 | \n", "0.000000 | \n", "0.000000e+00 | \n", "0.000000e+00 | \n", "0.020000 | \n", "1.000000 | \n", "0.500000 | \n", "0 | \n", "Audio | \n", "
| 2 | \n", "0.041315 | \n", "0.019994 | \n", "0.000000 | \n", "0.143393 | \n", "0.143393 | \n", "9.536743e-09 | \n", "9.536743e-09 | \n", "9.536743e-09 | \n", "1.907349e-08 | \n", "4.053116e-08 | \n", "... | \n", "0.500000 | \n", "-3.000000 | \n", "0.000000 | \n", "0.000000e+00 | \n", "0.000000e+00 | \n", "0.019231 | \n", "1.000000 | \n", "0.500000 | \n", "0 | \n", "Audio | \n", "
| 3 | \n", "0.008119 | \n", "0.019954 | \n", "0.000873 | \n", "0.044432 | \n", "0.043559 | \n", "9.701633e-05 | \n", "1.477895e-04 | \n", "1.699674e-04 | \n", "1.779909e-04 | \n", "1.895509e-04 | \n", "... | \n", "0.500000 | \n", "-3.000000 | \n", "0.000000 | \n", "0.000000e+00 | \n", "0.000000e+00 | \n", "0.020000 | \n", "1.000000 | \n", "0.500000 | \n", "0 | \n", "Audio | \n", "
| 4 | \n", "0.018683 | \n", "0.020117 | \n", "0.000001 | \n", "0.121093 | \n", "0.121092 | \n", "1.023531e-05 | \n", "7.453918e-05 | \n", "1.209468e-04 | \n", "1.324451e-04 | \n", "1.531601e-04 | \n", "... | \n", "0.500000 | \n", "-3.000000 | \n", "0.000000 | \n", "0.000000e+00 | \n", "0.000000e+00 | \n", "0.021739 | \n", "1.000000 | \n", "0.500000 | \n", "0 | \n", "Audio | \n", "
| ... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
| 139995 | \n", "0.000799 | \n", "0.337698 | \n", "0.336812 | \n", "0.338365 | \n", "0.001553 | \n", "3.370330e-03 | \n", "3.372540e-03 | \n", "3.373646e-03 | \n", "3.374751e-03 | \n", "3.376961e-03 | \n", "... | \n", "0.511905 | \n", "-1.500000 | \n", "-0.707107 | \n", "-2.211840e+08 | \n", "3.185050e+11 | \n", "0.666667 | \n", "0.666667 | \n", "0.488095 | \n", "3 | \n", "ScreenSharing | \n", "
| 139996 | \n", "0.159892 | \n", "0.239946 | \n", "0.000108 | \n", "0.320163 | \n", "0.320055 | \n", "9.596729e-04 | \n", "1.918266e-03 | \n", "2.397562e-03 | \n", "2.876859e-03 | \n", "3.196862e-03 | \n", "... | \n", "1.000000 | \n", "-0.671026 | \n", "-1.148811 | \n", "-2.524719e+12 | \n", "6.654528e+16 | \n", "1.000000 | \n", "0.250000 | \n", "0.000000 | \n", "3 | \n", "ScreenSharing | \n", "
| 139997 | \n", "0.045574 | \n", "0.040176 | \n", "0.000012 | \n", "0.151814 | \n", "0.151802 | \n", "1.705837e-05 | \n", "3.843689e-05 | \n", "6.171942e-05 | \n", "1.125135e-04 | \n", "2.727780e-04 | \n", "... | \n", "0.500000 | \n", "-3.000000 | \n", "0.000000 | \n", "0.000000e+00 | \n", "0.000000e+00 | \n", "0.043478 | \n", "1.000000 | \n", "0.500000 | \n", "23 | \n", "ScreenSharing | \n", "
| 139998 | \n", "0.028728 | \n", "0.325410 | \n", "0.299745 | \n", "0.356444 | \n", "0.056699 | \n", "3.038041e-03 | \n", "3.078630e-03 | \n", "3.098925e-03 | \n", "3.119220e-03 | \n", "3.159810e-03 | \n", "... | \n", "0.511144 | \n", "-1.500000 | \n", "-0.695813 | \n", "-1.628640e+08 | \n", "2.163721e+11 | \n", "1.000000 | \n", "0.333333 | \n", "0.488856 | \n", "3 | \n", "ScreenSharing | \n", "
| 139999 | \n", "0.004189 | \n", "0.040222 | \n", "0.032511 | \n", "0.049401 | \n", "0.016890 | \n", "3.474479e-04 | \n", "3.678946e-04 | \n", "3.826904e-04 | \n", "3.873811e-04 | \n", "3.936524e-04 | \n", "... | \n", "0.500000 | \n", "-3.000000 | \n", "0.000000 | \n", "0.000000e+00 | \n", "0.000000e+00 | \n", "0.040000 | \n", "1.000000 | \n", "0.500000 | \n", "25 | \n", "ScreenSharing | \n", "
140000 rows × 96 columns
\n", "" ], "text/plain": [ " interarrival_std interarrival_mean interarrival_min \\\n", "0 0.001927 0.010000 0.004951 \n", "1 0.000515 0.020009 0.019227 \n", "2 0.041315 0.019994 0.000000 \n", "3 0.008119 0.019954 0.000873 \n", "4 0.018683 0.020117 0.000001 \n", "... ... ... ... \n", "139995 0.000799 0.337698 0.336812 \n", "139996 0.159892 0.239946 0.000108 \n", "139997 0.045574 0.040176 0.000012 \n", "139998 0.028728 0.325410 0.299745 \n", "139999 0.004189 0.040222 0.032511 \n", "\n", " interarrival_max interarrival_max_min_diff interarrival_p10 \\\n", "0 0.014423 0.009472 7.619953e-05 \n", "1 0.021251 0.002024 1.931565e-04 \n", "2 0.143393 0.143393 9.536743e-09 \n", "3 0.044432 0.043559 9.701633e-05 \n", "4 0.121093 0.121092 1.023531e-05 \n", "... ... ... ... \n", "139995 0.338365 0.001553 3.370330e-03 \n", "139996 0.320163 0.320055 9.596729e-04 \n", "139997 0.151814 0.151802 1.705837e-05 \n", "139998 0.356444 0.056699 3.038041e-03 \n", "139999 0.049401 0.016890 3.474479e-04 \n", "\n", " interarrival_p20 interarrival_p25 interarrival_p30 \\\n", "0 8.045912e-05 8.572698e-05 9.030223e-05 \n", "1 1.953020e-04 1.958430e-04 1.965890e-04 \n", "2 9.536743e-09 9.536743e-09 1.907349e-08 \n", "3 1.477895e-04 1.699674e-04 1.779909e-04 \n", "4 7.453918e-05 1.209468e-04 1.324451e-04 \n", "... ... ... ... \n", "139995 3.372540e-03 3.373646e-03 3.374751e-03 \n", "139996 1.918266e-03 2.397562e-03 2.876859e-03 \n", "139997 3.843689e-05 6.171942e-05 1.125135e-04 \n", "139998 3.078630e-03 3.098925e-03 3.119220e-03 \n", "139999 3.678946e-04 3.826904e-04 3.873811e-04 \n", "\n", " interarrival_p40 ... rtp_interarrival_max_min_R \\\n", "0 9.799051e-05 ... 0.500000 \n", "1 1.985469e-04 ... 0.500000 \n", "2 4.053116e-08 ... 0.500000 \n", "3 1.895509e-04 ... 0.500000 \n", "4 1.531601e-04 ... 0.500000 \n", "... ... ... ... \n", "139995 3.376961e-03 ... 0.511905 \n", "139996 3.196862e-03 ... 1.000000 \n", "139997 2.727780e-04 ... 0.500000 \n", "139998 3.159810e-03 ... 0.511144 \n", "139999 3.936524e-04 ... 0.500000 \n", "\n", " rtp_interarrival_kurtosis rtp_interarrival_skew \\\n", "0 -3.000000 0.000000 \n", "1 -3.000000 0.000000 \n", "2 -3.000000 0.000000 \n", "3 -3.000000 0.000000 \n", "4 -3.000000 0.000000 \n", "... ... ... \n", "139995 -1.500000 -0.707107 \n", "139996 -0.671026 -1.148811 \n", "139997 -3.000000 0.000000 \n", "139998 -1.500000 -0.695813 \n", "139999 -3.000000 0.000000 \n", "\n", " rtp_interarrival_moment3 rtp_interarrival_moment4 \\\n", "0 0.000000e+00 0.000000e+00 \n", "1 0.000000e+00 0.000000e+00 \n", "2 0.000000e+00 0.000000e+00 \n", "3 0.000000e+00 0.000000e+00 \n", "4 0.000000e+00 0.000000e+00 \n", "... ... ... \n", "139995 -2.211840e+08 3.185050e+11 \n", "139996 -2.524719e+12 6.654528e+16 \n", "139997 0.000000e+00 0.000000e+00 \n", "139998 -1.628640e+08 2.163721e+11 \n", "139999 0.000000e+00 0.000000e+00 \n", "\n", " rtp_interarrival_len_unique_percent \\\n", "0 0.010000 \n", "1 0.020000 \n", "2 0.019231 \n", "3 0.020000 \n", "4 0.021739 \n", "... ... \n", "139995 0.666667 \n", "139996 1.000000 \n", "139997 0.043478 \n", "139998 1.000000 \n", "139999 0.040000 \n", "\n", " rtp_interarrival_max_value_count_percent rtp_interarrival_min_max_R \\\n", "0 1.000000 0.500000 \n", "1 1.000000 0.500000 \n", "2 1.000000 0.500000 \n", "3 1.000000 0.500000 \n", "4 1.000000 0.500000 \n", "... ... ... \n", "139995 0.666667 0.488095 \n", "139996 0.250000 0.000000 \n", "139997 1.000000 0.500000 \n", "139998 0.333333 0.488856 \n", "139999 1.000000 0.500000 \n", "\n", " rtp_marker_sum_check label \n", "0 0 Audio \n", "1 0 Audio \n", "2 0 Audio \n", "3 0 Audio \n", "4 0 Audio \n", "... ... ... \n", "139995 3 ScreenSharing \n", "139996 3 ScreenSharing \n", "139997 23 ScreenSharing \n", "139998 3 ScreenSharing \n", "139999 25 ScreenSharing \n", "\n", "[140000 rows x 96 columns]" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"RTP_dataset.csv\")\n", "df" ] }, { "cell_type": "markdown", "id": "0ac3650a", "metadata": {}, "source": [ "### 2.2 Binary classification\n", "From now on, we focus on two major classes, **Video** and **Audio**, and you need to develop ML pipeline to classify the traffic based on statistical features. Specifically, you will perform the following steps:\n", "- Data preprocessing\n", "- Model development (perform ERM with an algorithm)\n", "- Performance evaluation" ] }, { "cell_type": "markdown", "id": "bb0eab26", "metadata": {}, "source": [ "### 2.2.1 Dataset preprocessing - Data split and standardization\n", "- Extract data only associated to the aforementioned classes.\n", "- For an individual class, assign a numerical label (0 to Video and 1 to Audio).\n", "- Split the whole dataset into training and test. Stratify the split, keeping the 70/30 proportion (i.e., the training dataset contains the 70% of the sample per label, the test contains the remaining 30% per label).\n", "- After the splitting, standardize the data (features). Fit the StandardScaler only on the training set and then transform both the training and test sets. From now on, you will use the same standardize datasets for all the experiments." ] }, { "cell_type": "code", "execution_count": null, "id": "9ff3ad91", "metadata": {}, "outputs": [], "source": [ "# This part is provided\n", "# You can simply run this cell\n", "\n", "# extract data from Video and Audio\n", "# we have to perform a copy of the dataset otherwise we will modify the original dataset\n", "\n", "video = ['FEC-Video', 'HighQ', 'LowQ', 'MediumQ']\n", "audio = ['Audio', 'FEC-Audio']\n", "screen = ['ScreenSharing']\n", "\n", "video_data = df[df[\"label\"].isin(video)].copy()\n", "audio_data = df[df[\"label\"].isin(audio)].copy()\n", "\n", "video_data[\"binary_label\"]=0\n", "audio_data[\"binary_label\"]=1\n", "\n", "video_data = video_data.drop(\"label\",axis=1)\n", "audio_data = audio_data.drop(\"label\",axis=1)\n", "\n", "binary_dataset = pd.concat([video_data, audio_data])\n", "\n", "# prepare the new dataset\n", "# get the X and y from the dataset\n", "X = binary_dataset.drop(columns=['binary_label']).to_numpy()\n", "y = binary_dataset[['binary_label']].to_numpy()" ] }, { "cell_type": "code", "execution_count": null, "id": "7e1cf5e9", "metadata": {}, "outputs": [], "source": [ "# your answer here\n", "\n", "# run stratified training-test splitting using train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X,\n", " y,\n", " stratify = y, # stratify the dataset based on class labels\n", " train_size = 0.7, # percentage of training set\n", " random_state = 42\n", ")\n", "\n", "# standardize data using StandardScaler\n", "scaler = StandardScaler()\n", "X_train_s = scaler.fit_transform(X_train, y_train)\n", "X_test_s = scaler.transform(X_test)" ] }, { "cell_type": "markdown", "id": "2ff6a273", "metadata": {}, "source": [ "### 2.2.2 Dataset preprocessing - Removal of correlated features\n", "- For the training set, compute and display the correlation matrix between the features (refer to lab 2 for details).\n", "- Remove strongly correlated features from both training and test sets, i.e., features having a correlation > 0.8. Note that a feature may be strongly correlated with many others.\n", " - How many correlated features you have to remove?" ] }, { "cell_type": "code", "execution_count": 56, "id": "280530a5", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG6CAYAAADge/nUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB3ElEQVR4nO3deVxUVf8H8M8wrKLizpKyaC6Ia6gIYmIphHubaIa4pqEpUqa4gqmIFuGK4U7u5ZKWGxViPmoCipkblAtJIGmGIjJs9/fHT6fuzIAwDHMH+byf1329nnPuud97ZkL5eu6558gEQRBAREREVIMYSd0BIiIiIn1jAkREREQ1DhMgIiIiqnGYABEREVGNwwSIiIiIahwmQERERFTjMAEiIiKiGocJEBEREdU4TICIiIioxmECRERERDVOtUiA1qxZAycnJ5ibm8PV1RU//fST1F0iIiKqVk6cOIGBAwfCzs4OMpkM+/fvf+Y1CQkJcHV1hbm5OZo3b461a9eqtdmzZw/atm0LMzMztG3bFvv27VNrY4i/xw0+Adq1axeCgoIwe/ZsnD9/Hj179oSvry/S09Ol7hoREVG18ejRI3Ts2BGrVq0qV/sbN26gX79+6NmzJ86fP49Zs2ZhypQp2LNnj7LN6dOn4efnB39/f1y4cAH+/v4YOnQofv75Z2UbQ/09LjP0zVDd3Nzw0ksvITo6Wlnn7OyMIUOGIDw8XNK+ERERVUcymQz79u3DkCFDSm0zY8YMHDhwAFeuXFHWTZw4ERcuXMDp06cBAH5+fnjw4AEOHz6sbPPaa6+hfv362LFjB2DAv8cNegSooKAAycnJ8Pb2FtV7e3vj1KlTkvWLiIjIECgUCjx48EB0KBQKncQ+ffq02u9fHx8fJCUlobCwsMw2T39HG/LvcWNJ7/4Md+/eRXFxMaytrUX11tbWyMrKKncci86TReX7ic8e/nvwuFBU/idPXLZvWKvc9zckP6XdFZV7tmwkWV+IiAyRuR5+M6r+XtLWjMGNEBYWJqqbP38+QkNDKx07KytL4+/foqIi3L17F7a2tqW2efo7Wle/x6uCQSdAT8lkMlFZEAS1uqcUCoVa9iuUFENmJK/SPhIREelbSEgIgoODRXVmZmY6i6/p969qfXl+R1fk97i+GPQjsEaNGkEul6tlidnZ2WrZ5FPh4eGwsrISHUV3kvXUYyIionKQGenkMDMzQ926dUWHrhIgGxsbjb9/jY2N0bBhwzLbPP0drc3vcX0x6ATI1NQUrq6uiIuLE9XHxcXBw8ND4zUhISHIyckRHcbWrnrqMRERUTnIZLo5qpC7u7va799jx46hS5cuMDExKbPN09/R2vwe1xeDfwQWHBwMf39/dOnSBe7u7oiJiUF6ejomTpyosb2ZmZla9vtPcrSoXL/rs+cE1bUwKbNcWFQiKl/OeCgqZz56LCr/mZuvdo8Lfz4SlW9m54r7nSO+ppV9PVHZ3ET9sV59S3E/Azo1FZU554eIqGbKzc3Fb7/9pizfuHEDKSkpaNCgAezt7RESEoKMjAzExsYCT974WrVqFYKDgzF+/HicPn0aGzZsUL7dBQBTp07Fyy+/jIiICAwePBjffPMNvv/+e5w8eVLZpqK/x/XF4BMgPz8/3Lt3DwsWLEBmZibatWuHQ4cOwcHBQequERERaUem/wcwSUlJ6N27t7L8dO5QQEAANm/ejMzMTNHaPE5OTjh06BCmTZuG1atXw87ODitWrMCbb76pbOPh4YGdO3dizpw5mDt3Llq0aIFdu3bBzc1N2cZQf48b/DpAupBfJC6XZwToWarrCFALa0u1a4iI6F96eQusa3A5Wj3b48RIncSpiQx6DhARERFRVTD4R2BVQXXER3VESFMbVZ1mHxWV/V5tISp3tBWPtHS1ra8WY0w3x3L1l4iInjMSPAIjsRqZABEREUlK4jVwiAkQERGR/nEESHL8L0BEREQ1TrUaAQoPD8esWbMwdepUREVFlfs61X29VNf00TTfR3VeUH23V0Tl66veKPf9iYiIRPgITHLVJgFKTExETEwMOnToIHVXiIiIKoePwCRXLf4L5ObmYsSIEVi3bh3q11d/m4qIiIioIqpFAjRp0iT0798fffr0kborRERElVcN9gJ73hn8I7CdO3fi3LlzSExM1DrGP3llzwHSRHXOz/2ff1RpwTlARESkJT4Ck5xBJ0B//PEHpk6dimPHjsHc3Lxc1ygUCigUClFdgaIYpiobpBIREVHNZdApaHJyMrKzs+Hq6gpjY2MYGxsjISEBK1asgLGxMYqLi9WuCQ8Ph5WVlej4YsWnkvSfiIhIIz4Ck5xBjwC9+uqruHjxoqhu9OjRaNOmDWbMmAG5XH0z0JCQEOUOt0+l/6OeKBEREUmGj8AkZ9AJUJ06ddCuXTtRnaWlJRo2bKhW/5SZmRnMVB53vVhL3EZ1J3fVfb2gcZ0fcVl1nSB5yy6icmO7xqJy02ZWavcY+7K9qOzd0kZUblDbVO0aIiIiqjyDToCIiIieSxwBkly1S4COHz8udReIiIgqx4jzd6RW7RIgIiKiao8jQJKrkQnQ5YyHorLfqy0qHEN1zk9xWpKonHW7rrh8w0EthkxlBn+xID7/doemorKpMf/AEBER6UKNTICIiIgkxVfYJccEiIiISN/4CExy/C9ARERENY5BjwAVFRUhNDQU27ZtQ1ZWFmxtbTFq1CjMmTMHRkba526Zjx6Lyh1tLSscQ3WdH9U5P3j8QFy+m64W488/xesAXfgzT1Tu6ZAvKts3VFnQiIiIqic+ApOcQSdAERERWLt2LbZs2QIXFxckJSVh9OjRsLKywtSpU6XuHhERkXb4CExyBp0AnT59GoMHD0b//v0BAI6OjtixYweSkpKeeS0RERFRaQw6AfL09MTatWuRmpqKVq1a4cKFCzh58iSioqIqFffPXPGjpa629SscQ3VrC7XX3FUfeeXlqMX4K+OuqHw1Q9yP2/fFj9n4CIyI6DnBR2CSM+gEaMaMGcjJyUGbNm0gl8tRXFyMRYsWYfjw4aVeo1AooFAoRHWCXH1/MCIiIsnwEZjkDPq/wK5du7B161Zs374d586dw5YtW/Dpp59iy5YtpV4THh4OKysr0bEsIlyv/SYiIiLDZtAjQNOnT8fMmTMxbNgwAED79u1x69YthIeHIyAgQOM1ISEhCA4OFtUJco7+EBGRAeEjMMkZdAKUl5en9rq7XC5HSUlJqdeYmak/7sovEre58OcjUXlMN8cK923sy+JX2FW3tVB9xV11vg8AFFz9WVROlIs/6/ZGtUVljxcbVrifRERkgPgITHIGnQANHDgQixYtgr29PVxcXHD+/HlERkZizJgxUneNiIhIexwBkpxBJ0ArV67E3LlzERgYiOzsbNjZ2WHChAmYN2+e1F0jIiKiasygE6A6deogKiqq0q+9ExERGRQ+ApOcQSdAVeVmdm6lY3i3tBGViwXxedVtLVTX+IGGOT/5l06Lyt/VMheV5/ZpKSpbW3FyNxFRtcQESHL8L0BEREQ1To0cASIiIpIUJ0FLjiNARERE+iYz0s2hhTVr1sDJyQnm5uZwdXXFTz/9VGb71atXw9nZGRYWFmjdujViY2NF5728vCCTydSOp/t4AkBoaKjaeRsbGw130x9JR4BOnDiBZcuWITk5GZmZmdi3bx+GDBkCACgsLMScOXNw6NAhXL9+HVZWVujTpw+WLFkCOzu7St33n5z8crQqW4PapqLy2x2aiso9HcT3UN3XCxrW+VGd8/NPYryofDjVVVTu1KSeWswXrcUxa5tzkI+IiP7frl27EBQUhDVr1qBHjx744osv4Ovri8uXL8Pe3l6tfXR0NEJCQrBu3Tp07doVZ8+exfjx41G/fn0MHDgQALB3714UFBQor7l37x46duyIt99+WxTLxcUF33//vbIsl8ur9LM+i6QjQI8ePULHjh2xatUqtXN5eXk4d+4c5s6di3PnzmHv3r1ITU3FoEGDJOkrERGRzshkujkqKDIyEmPHjsW4cePg7OyMqKgoNGvWDNHR0Rrbf/nll5gwYQL8/PzQvHlzDBs2DGPHjkVERISyTYMGDWBjY6M84uLiUKtWLbUEyNjYWNSucWP1gQF9knR4wNfXF76+vhrPWVlZIS4uTlS3cuVKdOvWDenp6RozVSIiompBgrfACgoKkJycjJkzZ4rqvb29cerUKY3XKBQKmJuLn05YWFjg7NmzKCwshImJido1GzZswLBhw2BpaSmqT0tLg52dHczMzODm5obFixejefPmOvls2qhWc4BycnIgk8lQr576ox8iIqKaRqFQ4MGDB6JDoVBobHv37l0UFxfD2tpaVG9tbY2srCyN1/j4+GD9+vVITk6GIAhISkrCxo0bUVhYiLt31bd4Onv2LH799VeMGzdOVO/m5obY2FgcPXoU69atQ1ZWFjw8PHDv3r1Kff7KqDYTRPLz8zFz5ky88847qFu3bqVitbLXfQJlaizOJe0b1iqzDA17e6mu86M652da4KfiALbi9gDQsouLqHx2Xp9ndZ2IiPRNR2+BhYeHIywsTFQ3f/58hIaGlnFr8b0FQVCre2ru3LnIyspC9+7dIQgCrK2tMWrUKCxdulTjHJ4NGzagXbt26Natm6j+v0972rdvD3d3d7Ro0QJbtmxR28BcX6rFCFBhYSGGDRuGkpISrFmzpsy2FcmGiYiIpKDprSltjpCQEOTk5IiOkJAQjfds1KgR5HK52mhPdna22qjQUxYWFti4cSPy8vJw8+ZNpKenw9HREXXq1EGjRo1EbfPy8rBz50610R9NLC0t0b59e6SlpVXoe9Mlg0+ACgsLMXToUNy4cQNxcXHPHP0JDw+HlZWV6FgWEa63/hIRET2LrhIgMzMz1K1bV3SYmWneJcDU1BSurq5q82vj4uLg4eFRZn9NTEzQtGlTyOVy7Ny5EwMGDICRkTiF2L17NxQKBd59991nfn6FQoErV67A1ta2XN9XVTDoR2BPk5+0tDTEx8ejYcOGz7wmJCREbThNkHPLCCIiouDgYPj7+6NLly5wd3dHTEwM0tPTMXHiRODJ79CMjAzlWj+pqak4e/Ys3NzccP/+fURGRuLXX3/Fli1b1GJv2LABQ4YM0fi7+qOPPsLAgQNhb2+P7OxsLFy4EA8ePEBAQIAePrVmkiZAubm5+O2335TlGzduICUlBQ0aNICdnR3eeustnDt3Dt9++y2Ki4uVw3YNGjSAqampxphmZmZq2W9+kbiNuYm0aw+URnVvL7V1flTn/GSqDx2mXRTPuk/NFO971sq2NoiISGISLQTt5+eHe/fuYcGCBcjMzES7du1w6NAhODg4AAAyMzORnp6ubF9cXIzPPvsM165dg4mJCXr37o1Tp07B0dFRFDc1NRUnT57EsWPHNN739u3bGD58OO7evYvGjRuje/fuOHPmjPK+UpAJgiCUo12VOH78OHr37q1WHxAQgNDQUDg5OWm8Lj4+Hl5eXuW+j2oC9MHeX0XllW+0K3csfUq59Y+o3PsDlYxbQwIEx06i4s8rhonKTICIiMqmj/Vjaw/drJM4ubtH6SROTSTpCJCXlxfKyr8kzM2IiIjoOWbQc4CIiIieR6W9dk76UyMToPqW6itXGiLVfb1U1/hRne8DALiZIiruvdJLVJ6pYe0gIiLSLyZA0jP41+CJiIiIdK1GjgARERFJiSNA0mMCREREpG/MfyQnaQJ04sQJLFu2DMnJycjMzMS+ffswZMgQUZsrV65gxowZSEhIQElJCVxcXLB79+5K7QYf0KmpDnpf9WqrvIupuq+X6ho/0DDnJ2LGclH5StBYUXnLiM466CkREVH1IukcoEePHqFjx45YtWqVxvO///47PD090aZNGxw/fhwXLlzA3LlzYW5urve+EhER6YqutsIg7Uk6AuTr6yvaIVbV7Nmz0a9fPyxdulRZ17x5cz31joiIqGoweZGewb4FVlJSgu+++w6tWrWCj48PmjRpAjc3N+zfv1/qrhEREVUKR4CkZ7CToLOzs5Gbm4slS5Zg4cKFiIiIwJEjR/DGG28gPj4evXr1KkeU//dT2l1RuWfLRlXQY/3TtK2F6jo/qnN+DkRtEF8wQvPjRyIioueZwSZAJSUlAIDBgwdj2rRpAIBOnTrh1KlTWLt2bakJkEKhgEKhENUVFChgasod4YmIyDBw9EZ6BvsIrFGjRjA2Nkbbtm1F9c7OzqKdalWFh4fDyspKdOyMWV5qeyIiIr2T6eggrRnsCJCpqSm6du2Ka9euiepTU1Ph4OBQ6nUhISEIDg4W1f1042GV9ZOIiIiqH0kToNzcXPz222/K8o0bN5CSkoIGDRrA3t4e06dPh5+fH15++WX07t0bR44cwcGDB3H8+PFSY5qZmcHMTPy461WXulX6OQyZ2jo/KnN+6nedLCrfT6z6OUFS3JOIyJDwEZj0JE2AkpKS0Lt3b2X56chNQEAANm/ejNdffx1r165FeHg4pkyZgtatW2PPnj3w9PSUsNdERESVwwRIepImQF5eXhAEocw2Y8aMwZgxY/TWJyIiInr+GewcINIP1cdP+ng8xUdeRFTTcQRIekyAiIiI9I35j+QM9jV4IiIioqrCESAiIiI94yMw6UmaAIWHh2Pv3r24evUqLCws4OHhgYiICLRu3VrZRhAEhIWFISYmBvfv34ebmxtWr14NFxcXKbv+3HrWnCBNbYiIqGKYAElP0kdgCQkJmDRpEs6cOYO4uDgUFRXB29sbjx49UrZZunQpIiMjsWrVKiQmJsLGxgZ9+/bFw4dc3JCIiKonboYqPUlHgI4cOSIqb9q0CU2aNEFycjJefvllCIKAqKgozJ49G2+88QYAYMuWLbC2tsb27dsxYcIEiXpORERE1ZlBTYLOyckBADRo0AB4sjJ0VlYWvL29lW3MzMzQq1cvnDp1SrJ+EhERVQZHgKRnMJOgBUFAcHAwPD090a5dOwBAVlYWAMDa2lrU1traGrdu3ZKknzWNpvk+qvOCGnR/VVT+feXrVd4vIqJqjbmL5AwmAZo8eTJ++eUXnDx5Uu2capYrCEKpma9CoYBCoRC3l6vvD0ZEREQ1l0E8Avvggw9w4MABxMfHo2nTpsp6Gxsb4D8jQU9lZ2erjQo9FR4eDisrK9GxLCK8ij8BERFR+fERmPQkTYAEQcDkyZOxd+9e/Pjjj3BychKdd3Jygo2NDeLi4pR1BQUFSEhIgIeHh8aYISEhyMnJER3TZ4RU+WchIiIqLyZA0pP0EdikSZOwfft2fPPNN6hTp45ypMfKygoWFhaQyWQICgrC4sWL0bJlS7Rs2RKLFy9GrVq18M4772iMaWam/rgrv0gvH6fGUJ3z8/eZH1RacA4QEREZNkkToOjoaODJrvD/tWnTJowaNQoA8PHHH+Px48cIDAxULoR47Ngx1KlTR5I+ExERVRZHb6QnaQIkCMIz28hkMoSGhiI0NFQvfSIiIqpyzH8kZxCToImIiIj0yWBeg6fqQ32dH3FZdZ0g7h1GRCTGR2DSYwJERESkZ0yApMdHYERERHom5Wvwa9asgZOTE8zNzeHq6oqffvqpzParV6+Gs7MzLCws0Lp1a8TGxorOb968WWPf8vPzK3XfqsYEiIiIqIbYtWsXgoKCMHv2bJw/fx49e/aEr68v0tPTNbaPjo5GSEgIQkNDcenSJYSFhWHSpEk4ePCgqF3dunWRmZkpOszNzbW+rz7IhPK8ilVFwsPDsXfvXly9ehUWFhbw8PBAREQEWrdurbH9hAkTEBMTg88//xxBQUHlvg/XAZIW5wQRUXVirofJIU5B3+kkzo2o/hVq7+bmhpdeekm5DA0AODs7Y8iQIQgPV981wcPDAz169MCyZcuUdUFBQUhKSlJuXbV582YEBQXhn3/+0dl99UHSEaCEhARMmjQJZ86cQVxcHIqKiuDt7Y1Hjx6ptd2/fz9+/vln2NnZSdJXIiIinZHp6KiAgoICJCcnw9vbW1Tv7e2NU6dOabxGoVCIRnIAwMLCAmfPnkVhYaGyLjc3Fw4ODmjatCkGDBiA8+fPV+q++iBpAnTkyBGMGjUKLi4u6NixIzZt2oT09HQkJyeL2mVkZGDy5MnYtm0bTExMJOsvERGRIVEoFHjw4IHoUN0Q/Km7d++iuLhYbS9Na2trtT03n/Lx8cH69euRnJwMQRCQlJSEjRs3orCwEHfv3gUAtGnTBps3b8aBAwewY8cOmJubo0ePHkhLS9P6vvpgUHOAcnJyAAANGjRQ1pWUlMDf3x/Tp0+Hi4uLhL0jIiLSDV1Ngta0AfizHimpTp4WBKHUCdVz586Fr68vunfvDhMTEwwePFi5U4NcLgcAdO/eHe+++y46duyInj17Yvfu3WjVqhVWrlyp9X31wWBegxcEAcHBwfD09ES7du2U9RERETA2NsaUKVMk7d/zSh/zc1Rjck4QEdV0uvrFHxISguDgYFGd6n6YTzVq1AhyuVxt1CU7O1ttdOYpCwsLbNy4EV988QXu3LkDW1tbxMTEoE6dOmjUqJHGa4yMjNC1a1flCJA299UHgxkBmjx5Mn755Rfs2LFDWZecnIzly5crX7Erj4oMBxIREVVnZmZmqFu3rugoLQEyNTWFq6sr4uLiRPVxcXHw8PAo8z4mJiZo2rQp5HI5du7ciQEDBsDISHMKIQgCUlJSYGtrW+n7ViWDSIA++OADHDhwAPHx8WjatKmy/qeffkJ2djbs7e1hbGwMY2Nj3Lp1Cx9++CEcHR01xtI0HLgsQpoZ5kRERJrIZLo5Kio4OBjr16/Hxo0bceXKFUybNg3p6emYOHEi8GREaeTIkcr2qamp2Lp1K9LS0nD27FkMGzYMv/76KxYvXqxsExYWhqNHj+L69etISUnB2LFjkZKSooxZnvtKQfLNUD/44APs27cPx48fh5OTk+i8v78/+vTpI6rz8fGBv78/Ro8erTGmpuFAQa45GyYiIpKCVHNf/Pz8cO/ePSxYsACZmZlo164dDh06BAcHBwBAZmamaG2e4uJifPbZZ7h27RpMTEzQu3dvnDp1SjQI8c8//+C9995DVlYWrKys0LlzZ5w4cQLdunUr932lIOk6QIGBgdi+fTu++eYb0do/VlZWsLCw0HiNo6MjgoKCuA7Qc0R1ThC0mBfUbuZhUfnXJb6V7pch2Jx4U61uVFfNo59Ved/1P9wQlU/O7C0qvxJ5QlQe11u9j+90ttdpH3Vh53nxImz7UrLV2uwa3UWPPSJDoI91gFpOP6KTOGnLXtNJnJpI0kdg0dHRyMnJgZeXF2xtbZXHrl27pOwWERFRlZLqERj9S/JHYBV186b6v4iJiIiqE26GKj2DeQ2eiIiopmD+Iz1J5wDpC+cAVT+VXSuo35rTanW/nLslKuc9zBOVhccPxRfk3heXC8U7G0Om4QmyuaW4bGwqLpuK57aZ16svKltYis9fX/2G+j2IqErpYw5Qm5lHdRLn6hIfncSpiTgCREREpGdGRhwCkhoTICIiIj3jIzDpSZoAhYeHY+/evbh69SosLCzg4eGBiIgI0Svxubm5mDlzJvbv34979+7B0dERU6ZMwfvvvy9l16mKPWv7jGO7PhGVuzYXP0o6FOiuIaqmOiIiqokkfQ0+ISEBkyZNwpkzZxAXF4eioiJ4e3vj0aNHyjbTpk3DkSNHsHXrVuXqkR988AG++eYbKbtORESkNV1thkrak3QE6MgR8UJQmzZtQpMmTZCcnIyXX34ZAHD69GkEBATAy8sLAPDee+/hiy++QFJSEgYPHixJv4mIiCqDuYv0DGIvsKdycnIAAA0aNFDWeXp64sCBA8jIyIAgCIiPj0dqaip8fDjznYiIiLRjMJOgBUFAcHAwPD090a5dO2X9ihUrMH78eDRt2hTGxsYwMjLC+vXr4enpKWl/Sb9U5/x4+80VlSv6mjwRkZT4+Ep6BpMATZ48Gb/88gtOnjwpql+xYgXOnDmDAwcOwMHBASdOnEBgYCBsbW3VNkoFAIVCAYVCIaoT5GYwM+OGqEREZBiYAEnPIB6BffDBBzhw4ADi4+PRtGlTZf3jx48xa9YsREZGYuDAgejQoQMmT54MPz8/fPrppxpjhYeHw8rKSnQsiwjX46chIiIiQyf5XmAffPAB9u3bh+PHj8PJyUl0vrCwEIWFhTAyEudpcrkcJSUlGmOGhIQgODhYfB85R3+IiMhwcABIepImQJMmTcL27dvxzTffoE6dOsjKygIAWFlZwcLCAnXr1kWvXr0wffp0WFhYwMHBAQkJCYiNjUVkZKTGmGZm6o+7uBWGYWs387Ba3a9LfEVl1XV+nrVO0PMyJ2hEbLJa3baRrnq/71udbUTl19u/ICrXH7pBVL6/e2wV9k53CovE/5DakfKHWpuRXRz02COqKfgITHqSJkDR0dEAoHzF/alNmzZh1KhRAICdO3ciJCQEI0aMwN9//w0HBwcsWrQIEydOlKTPRERElcX8R3qSPwJ7FhsbG2zatEkv/SEiIqKawWDeAiMiIqop+AhMejKhPMMw1RznAFU//dacFpU17+1VOtU5QQAAhw6iYp0G9cTl+nVE5aZN64rKTjbi8+3taqvdonVDS3E/zExF5dpm4n9zWNczF5WtLExEZf4dSaR/5noYGuiyMF4ncZLm9NZJnJrIIF6DJyIiItInPgIjIiLSMz4Ckx4TICIiIj1j/iM9yV+Dj46Oxs2bNwEALi4umDdvHnx9fVFYWIg5c+bg0KFDuH79OqysrNCnTx8sWbIEdnZ2Unab9OCXc7dUaio2B0h1vg8A4NYvouLDLPF8nYe1xWsNZd+2FZWvNxbPGbrygrgMAE2txfOCrGqJ5wDVtxSXO9jWEpWtLcRzgrxaN1a7BxERVZ6kc4CaNm2KJUuWICkpCUlJSXjllVcwePBgXLp0CXl5eTh37hzmzp2Lc+fOYe/evUhNTcWgQYOk7DIREVGlyWQynRykPUlHgAYOHCgqL1q0CNHR0Thz5gzGjh2LuLg40fmVK1eiW7duSE9Ph729vZ57S0REpBvMXaRnMHOAiouL8dVXX+HRo0dwd9f8uCMnJwcymQz16qk/eiAiIiIqL8kToIsXL8Ld3R35+fmoXbs29u3bh7Zt26q1y8/Px8yZM/HOO++gbt26GmPR8yPvYV6lrldd4wca5vxA8UhcFsT7QhXJxX88HsjFT4yNTdT/+BgZif9Z98CyUFx+LC6bG4vbP7IqFpW9wDlARM8jPr6SnuQJUOvWrZGSkoJ//vkHe/bsQUBAABISEkRJUGFhIYYNG4aSkhKsWbOmzHgKhQIKhUJUJ8jVN0glIiKSCvMf6Um+EKKpqSlefPFFdOnSBeHh4ejYsSOWL1+uPF9YWIihQ4fixo0biIuLe+boT3h4OKysrETHsohwPXwSIiKi8uEkaOlJPgKkShAE5QjO0+QnLS0N8fHxaNiw4TOvDwkJQXBwsDimnKM/RERE9C9JE6BZs2bB19cXzZo1w8OHD7Fz504cP34cR44cQVFREd566y2cO3cO3377LYqLi5GVlQUAaNCgAUxNTTXGNDNTf9zFvcCqH+Hxw0pdr7qvFzSs86M65wcFj8Xl3Pvi0ybiNXpyzdR/Bu+ZyEVlhUL8w5evUrYwFbcvKH7ut+YjIj4CMwiSJkB37tyBv78/MjMzYWVlhQ4dOuDIkSPo27cvbt68iQMHDgAAOnXqJLouPj4eXl5eEvWaiIiocvj4SnqSJkAbNmwo9ZyjoyNqwEb1REREJAGDmwNERET0vOMIkPSYAJFhUpl/U1FNm6q/Lai6t5fqOj9q98zLEZdLxGv05KqUAaCwQLzOT46FeD6aeS3xPCLVOULZ9SzUYhLR84f5j/Qkfw2eiIiISN+YABEREemZlOsArVmzBk5OTjA3N4erqyt++umnMtuvXr0azs7OsLCwQOvWrREbGys6v27dOvTs2RP169dH/fr10adPH5w9e1bUJjQ0VK3vNjY2WvVfV5gAERER6ZlMppujonbt2oWgoCDMnj0b58+fR8+ePeHr64v09HSN7aOjoxESEoLQ0FBcunQJYWFhmDRpEg4ePKhsc/z4cQwfPhzx8fE4ffo07O3t4e3tjYyMDFEsFxcXZGZmKo+LFy9W/APokKRzgKKjoxEdHY2bN28CT76cefPmwdfXV9nmypUrmDFjBhISElBSUgIXFxfs3r2bu8E/7wrzK3W5k436OkDXG4v3B1Pd20t1nR/VOT/IzxWX72eq3UNRLJ4DpDAT7z+Waya+R1GheA7QP/9U7nMTEZUlMjISY8eOxbhx4wAAUVFROHr0KKKjoxEerr5rwpdffokJEybAz88PANC8eXOcOXMGERERGDhwIABg27ZtomvWrVuHr7/+Gj/88ANGjhyprDc2NpZ81Oe/JB0Batq0KZYsWYKkpCQkJSXhlVdeweDBg3Hp0iUAwO+//w5PT0+0adMGx48fx4ULFzB37lyYm5s/MzYREZGh0tUjMIVCgQcPHogO1f0wnyooKEBycjK8vb1F9d7e3jh16pTGaxQKhdrvXAsLC5w9exaFhYUar8nLy0NhYSEaNGggqk9LS4OdnR2cnJwwbNgwXL9+vYLfmm5JmgANHDgQ/fr1Q6tWrdCqVSssWrQItWvXxpkzZwAAs2fPRr9+/bB06VJ07twZzZs3R//+/dGkSRMpu01ERFQpunoEpmn/S00jOQBw9+5dFBcXw9raWlRvbW2t3GlBlY+PD9avX4/k5GQIgoCkpCRs3LgRhYWFuHv3rsZrZs6ciRdeeAF9+vRR1rm5uSE2NhZHjx7FunXrkJWVBQ8PD9y7d69S32NlGMxr8MXFxfjqq6/w6NEjuLu7o6SkBN999x0+/vhj+Pj44Pz583ByckJISAiGDBkidXepqskql5u3t6utVnflBfEjMGMT8Y+/6tYWaq+5qz7yUn0kBg2PzYzFMUvMaonKfxeJ2z/OFZ8noueTkY7eg9e0/6XqdlCqVCdPC4JQ6oTquXPnIisrC927d4cgCLC2tsaoUaOwdOlSyOVytfZLly7Fjh07cPz4cdHI0X+ntrRv3x7u7u5o0aIFtmzZotZ/fZF8EvTFixdRu3ZtmJmZYeLEidi3bx/atm2L7Oxs5ObmYsmSJXjttddw7NgxvP7663jjjTeQkJBQaryKDAcSERFVZ2ZmZqhbt67oKC0BatSoEeRyudpoT3Z2ttqo0FMWFhbYuHEj8vLycPPmTaSnp8PR0RF16tRBo0aNRG0//fRTLF68GMeOHUOHDh3K7LelpSXat2+PtLS0Cn9mXZE8AWrdujVSUlJw5swZvP/++wgICMDly5dRUvL/G1UOHjwY06ZNQ6dOnTBz5kwMGDAAa9euLTWepuHAZRGahwOJiIikIMVbYKampnB1dUVcXJyoPi4uDh4eHmVea2JigqZNm0Iul2Pnzp0YMGAAjIz+TSGWLVuGTz75BEeOHEGXLl2e2ReFQoErV67A1tb2mW2riuSPwExNTfHiiy8CALp06YLExEQsX74cK1euhLGxMdq2bStq7+zsjJMnT5YaT9NwoCAveziQiIhIn6TaCiM4OBj+/v7o0qUL3N3dERMTg/T0dEycOBF48js0IyNDudZPamoqzp49Czc3N9y/fx+RkZH49ddfsWXLFmXMpUuXYu7cudi+fTscHR2VI0y1a9dG7dr/Px3ho48+wsCBA2Fvb4/s7GwsXLgQDx48QEBAgCTfAwwhAVIlCAIUCgVMTU3RtWtXXLt2TXQ+NTUVDg4OpV5vZmamNvyXX1RqczJU5pblaFS61g3Vr29qLZ4XZGQk/gvonon4ebbqthaqr7irzfcBgILH4nKhouyyyl+CjwvVt/AgItIVPz8/3Lt3DwsWLEBmZibatWuHQ4cOKX+vZmZmitYEKi4uxmeffYZr167BxMQEvXv3xqlTp+Do6Khss2bNGhQUFOCtt94S3Wv+/PkIDQ0FANy+fRvDhw/H3bt30bhxY3Tv3h1nzpwp8/d5VZM0AZo1axZ8fX3RrFkzPHz4EDt37sTx48dx5MgRAMD06dPh5+eHl19+Gb1798aRI0dw8OBBHD9+XMpuExERVYqRhHuBBQYGIjAwUOO5zZs3i8rOzs44f/58mfGeruVXlp07d1awl1VP0gTozp078Pf3R2ZmJqysrNChQwccOXIEffv2BQC8/vrrWLt2LcLDwzFlyhS0bt0ae/bsgaenp5TdJiIiqhTuBi89SROgDRs2PLPNmDFjMGbMGL30h4iIiGoGg5sDRASor59TUfXN1K+3qiWue2CpMsdHIZ4slmMhnkumuq2Fxj6qzvERSsTlogJxWaEyZ8hIfV0NInr+cABIekyAiIiI9EwGZkBSYwJEREREBq24uBibN2/GDz/8gOzsbOVagU/9+OOPFY7JBIiIiEjPpHwLrDqaOnUqNm/ejP79+6Ndu3Y6mURuMAlQeHg4Zs2ahalTpyIqKgp4siZQWFgYYmJicP/+fbi5uWH16tVwcXGRurtU1UwtKnV5bTP1H+36lipzgB6L5wDlq8wBMq8l3gE510xcVt3XC9AwB0h1zo/qnKDCfHGZc4CIagS+BVYxO3fuxO7du9GvXz+dxZR8KwwASExMRExMjNreIUuXLkVkZCRWrVqFxMRE2NjYoG/fvnj48KFkfSUiIqosKbbCqM7+u2uErkieAOXm5mLEiBFYt24d6tevr6wXBAFRUVGYPXs23njjDbRr1w5btmxBXl4etm/fLmmfiYiISH8+/PBDLF++HIIg6Cym5I/AJk2ahP79+6NPnz5YuHChsv7GjRvIysqCt7e3ss7MzAy9evXCqVOnMGHCBIl6TEREVDlGNWn4RgdOnjyJ+Ph4HD58GC4uLjAxMRGd37t3b4VjSpoA7dy5E+fOnUNiYqLauaebqVlbW4vqra2tcevWLb31kaRhXq9+OVqVzrqeuVpdB1vxnB1zY/FfQBam4vk3qusCFRWKy38XadgLTPUvNdV1flTn/KjuHVbMjeuIagLmPxVTr149vP766zqNKVkC9Mcff2Dq1Kk4duwYzM3Vf1k9pTpRTBCEMiePKRQKKBTiiaiCXH2DVCIiIqoeNm3apPOYks0BSk5ORnZ2NlxdXWFsbAxjY2MkJCRgxYoVMDY2Vo78PB0Jeio7O1ttVOi/wsPDYWVlJTqWRYRX+echIiIqL5lMppOjpvnrr79w8uRJ/O9//8Nff/1VqViSjQC9+uqruHjxoqhu9OjRaNOmDWbMmIHmzZvDxsYGcXFx6Ny5MwCgoKAACQkJiIiIKDVuSEgIgoODRXWCnKM/RERkOGpg7lIpjx49wgcffIDY2FjlIohyuRwjR47EypUrUauWhmVJnkGyBKhOnTpo166dqM7S0hINGzZU1gcFBWHx4sVo2bIlWrZsicWLF6NWrVp45513So1rZqb+uCuf0yqqHQvLyq0DZGVholZnbSF+1PrISjyHp6BY/HZBdj1xH/75Rzx/53Gu+h+4x4V1xRWq6/qollXn/BSL1yYiIiIgODgYCQkJOHjwIHr06AE8mRg9ZcoUfPjhh4iOjq5wTMnfAivLxx9/jMePHyMwMFC5EOKxY8dQp04dqbtGRESkNb4FVjF79uzB119/DS8vL2Vdv379YGFhgaFDh1b/BOj48eOiskwmQ2hoKEJDQyXrExERka4x/amYvLw8jfN/mzRpgry8PK1iaj0J+ssvv0SPHj1gZ2enfC09KioK33zzjbYhiYiIiNS4u7tj/vz5yM//dyrC48ePERYWBnd3d61iajUCFB0djXnz5iEoKAiLFi1CcfH/z6WoV68eoqKiMHjwYK06QzXT5sSbanXXV79RoRgjYpNF5W0jXdXaeLVuLC6jsVobQ1O/62S1uvuJq/R+32s/fCYqN6krnmcXmfC7qBzcq0UV9q7q/PNIfQ5WPUv1+WRElVUT3+CqjOXLl+O1115D06ZN0bFjR8hkMqSkpMDc3BxHjx7VKqZWI0ArV67EunXrMHv2bMjl/07q7NKli9qbXURERCRmJNPNUVO0a9cOaWlpCA8PR6dOndChQwcsWbIEaWlpWm+QrtUI0I0bN5Svpv+XmZkZHj16pFVHiIiIagqOAFWchYUFxo8fr7N4WiVATk5OSElJgYODg6j+8OHDaNu2ra76RkRERDXUgQMH4OvrCxMTExw4cKDMtoMGDapwfJmgxdaqmzZtwty5c/HZZ59h7NixWL9+PX7//XeEh4dj/fr1GDZsWIU7Eh4ejlmzZmHq1KmIiopSOz9hwgTExMTg888/R1BQUIVicx0gep6ozs/Rx5wgoprEXA/vR/tvu6CTOF+O6KiTOIbIyMgIWVlZaNKkCYyMSp+xI5PJlHORK0Kr/8yjR49GUVERPv74Y+Tl5eGdd97BCy+8gOXLl2uV/CQmJiImJgYdOnTQeH7//v34+eefYWdnp013iYiIDAofgT3b0xWfVf+/rlR4EnRRURG2bNmCgQMH4tatW8jOzkZWVhb++OMPjB07tsIdyM3NxYgRI7Bu3TrUr6++A3hGRgYmT56Mbdu2wcSEb2MQERHVNLGxsWobnePJFlmxsbFaxaxwAmRsbIz3339f2ZFGjRqhSZMmWt0cACZNmoT+/fujT58+audKSkrg7++P6dOnaz3Lm4iIyNDwLbCKGT16NHJyctTqHz58iNGjR2sVU6tHYG5ubjh//rzaJOiK2rlzJ86dO4fExESN5yMiImBsbIwpU6ZU6j5EzxPVOT+cE0RU/fARWMUIgqDxO7t9+zasrKy0iqlVAhQYGIgPP/wQt2/fhqurKywtLUXnS5vL819//PEHpk6dimPHjsHc3FztfHJyMpYvX45z585V6AdFoVCoDZMJcvUNUomIiMiwde7cGTKZDDKZDK+++iqMjf9NW4qLi3Hjxg289tprWsXWKgHy8/MDANHIjEwmU2Zo5ZmNnZycjOzsbLi6/rtib3FxMU6cOIFVq1YhIiIC2dnZsLe3F53/8MMPERUVhZs31VcPxpO3ycLCwkR1s+fOx5x53E+MiIgMA8d/ymfIkCEAgJSUFPj4+KB27drKc6ampnB0dMSbb76pVWytXoN/uvdXacrzaOzhw4dqcUaPHo02bdpgxowZsLW1RWZmpui8j48P/P39MXr0aLRu3VpjXI4AUU3HR2JElaOP1+DH7fpVJ3HW+7XTSRxDt2XLFvj5+Wl8YqQtrf4zV3buDwDUqVMH7dqJ/8NZWlqiYcOGyvqGDRuKzpuYmMDGxqbU5AdPVqNWTXa4DhAREVH1FRAQoPOYWiVAz3rlbOTIkdr2h4iI6LnHOdAVU1xcjM8//xy7d+9Geno6CgoKROf//vvvCsfUKgGaOnWqqFxYWIi8vDyYmpqiVq1aWidAx48fL/N8afN+iIiIqhO+BVYxYWFhWL9+PYKDgzF37lzMnj0bN2/exP79+zFv3jytYmo1B0iTtLQ0vP/++5g+fTp8fHx0EVJn+AiMajLOCZLWkctZovJrbW0k6wuVjz7mAE34+pJO4nzxVs1YI69FixZYsWIF+vfvjzp16iAlJUVZd+bMGWzfvr3CMSu8EGJpWrZsiSVLlqiNDhERERFVRlZWFtq3bw8AqF27tnJRxAEDBuC7777TKqbOEiAAkMvl+PPPP3UZkoiI6LljJJPp5NDGmjVr4OTkBHNzc7i6uuKnn34qs/3q1avh7OwMCwsLtG7dWuM84D179qBt27YwMzND27ZtsW/fvkrf97+aNm2qfDP8xRdfxLFjx4Ane4lq+5a3VgN9qtvSC4KAzMxMrFq1Cj169NCqI0RERDWFVFOAdu3ahaCgIKxZswY9evTAF198AV9fX1y+fFm07t5T0dHRCAkJwbp169C1a1ecPXsW48ePR/369TFw4EAAwOnTp+Hn54dPPvkEr7/+Ovbt24ehQ4fi5MmTcHNz0+q+ql5//XX88MMPcHNzw9SpUzF8+HBs2LAB6enpmDZtmlbfhVZzgFS3pZfJZGjcuDFeeeUVfPbZZ7C1ta1wR8LDwzFr1ixMnToVUVFRwJONUmfOnIn9+/fj3r17cHR0xJQpU/D+++9XKDbnABH9S3VOEDgvSK8aj9iiVvfXNt2/4kva08ccoMC9l3USZ80bbSvU3s3NDS+99BKio6OVdc7OzhgyZAjCw8PV2nt4eKBHjx5YtmyZsi4oKAhJSUk4efIk8GRx5AcPHuDw4cPKNq+99hrq16+PHTt2aHXfZzlz5gxOnTqFF198EYMGDarw9dB2BEjX29InJiYiJiZGbQuNadOmIT4+Hlu3boWjoyOOHTuGwMBA2NnZYfDgwTrtAxERkb7o6i0wTYv/aloPD092Tk9OTsbMmTNF9d7e3jh16lSp8VUXH7SwsMDZs2dRWFgIExMTnD59Wm0UxsfHRzmYoc19n6V79+7o3r27Vtc+pdUcoAULFiAvL0+t/vHjx1iwYEGFYuXm5mLEiBFYt24d6tevLzp3+vRpBAQEwMvLC46OjnjvvffQsWNHJCUladNtIiIig2CkoyM8PBxWVlaio7QRlbt376K4uBjW1taiemtra2RlZWm8xsfHB+vXr0dycjIEQUBSUhI2btyIwsJC3L17F3gyQbmsmNrcF0+m25T30IZWI0BhYWGYOHEiatWqJarPy8tDWFhYhd7JnzRpEvr3748+ffpg4cKFonOenp44cOAAxowZAzs7Oxw/fhypqalYvny5Nt0mIiJ6roSEhCA4OFhU96xJwaqjT6XttA4Ac+fORVZWFrp37w5BEGBtbY1Ro0Zh6dKlkMvlFYpZkfviP/uAPUt59yBVpVUCVFqnL1y4gAYNGpQ7zs6dO3Hu3DkkJiZqPL9ixQqMHz8eTZs2hbGxMYyMjLB+/Xp4enpq020iKmW+D9cK0h/O9yHo8BFYaY+7NGnUqBHkcrnaqEt2drba6MxTFhYW2LhxI7744gvcuXMHtra2iImJQZ06ddCoUSMAgI2NTZkxtbkvqmC6jaoKPQKrX78+GjRoAJlMhlatWqFBgwbKw8rKCn379sXQoUPLFeuPP/7A1KlTsXXr1lI3N3u6wNGBAweQnJyMzz77DIGBgfj+++9LjatQKPDgwQPRofp8lIiISEpGMt0cFWFqagpXV1fExcWJ6uPi4uDh4VHmtSYmJmjatCnkcjl27tyJAQMGKF+Icnd3V4t57NgxZczK3FeT/Pz8Cl+jSYVGgKKioiAIAsaMGYOwsDBYWVkpzz3dlt7d3b1csZKTk5GdnQ1XV1dlXXFxMU6cOIFVq1YhJycHs2bNwr59+9C/f38AQIcOHZCSkoJPP/0Uffr00Rg3PDwcYWFhorrZc+djzrzQinxUIiKi505wcDD8/f3RpUsXuLu7IyYmBunp6Zg4cSLw5JFaRkaGcq2f1NRUnD17Fm5ubrh//z4iIyPx66+/YsuWf99mnDp1Kl5++WVERERg8ODB+Oabb/D9998r3xIrz32fpbi4GIsXL8batWtx584dpKamonnz5pg7dy4cHR0xduzYCn8XFUqAnu7G6uTkBA8PD5iYmFT4hk+9+uqruHjxoqhu9OjRaNOmDWbMmIHi4mIUFhaqvXIvl8vLHBbT9DxUkGu3SBIREVFVqOjoja74+fnh3r17WLBgATIzM9GuXTscOnQIDg4OAIDMzEykp6cr2xcXF+Ozzz7DtWvXYGJigt69e+PUqVNwdHRUtvHw8MDOnTsxZ84czJ07Fy1atMCuXbuUawCV577PsmjRImzZsgVLly7F+PHjlfXt27fH559/rlUCVOm9wB4/fozCwkJRXd26dbWK5eXlhU6dOilfnfPy8sLdu3exatUqODg4ICEhAe+//z4iIyMrtBYQ1wEybJsT1Te5HdXVUWPb0oyITRaVt410LbVtdSLVmj2q9732w2eicpO64n9URCb8LioH92pRhb2rOv88KlSrq2ep/T/0qHrSxzpAHx68ppM4nw1srZM4hu7FF1/EF198gVdffRV16tTBhQsX0Lx5c1y9ehXu7u64f/9+hWNq9Z85Ly8PH3/8MXbv3o179+6pnddmNrYmO3fuREhICEaMGIG///4bDg4OWLRoUbmHzIiIiAyRVCNA1VVGRgZefPFFtfqSkhK1QZjy0ioBmj59OuLj47FmzRqMHDkSq1evRkZGBr744gssWbJEq44AwPHjx0VlGxsbbNq0Set4REREVP25uLjgp59+Untk9tVXX6Fz585axdQqATp48CBiY2Ph5eWFMWPGoGfPnnjxxRfh4OCAbdu2YcSIEVp1hoiIqCaQai+w6mr+/Pnw9/dHRkYGSkpKsHfvXly7dg2xsbH49ttvtYqpVQL0999/w8nJCXgy3+fvv/8GnixcWNF9uojW/3BDra6ic4De6myjwx4ZDtW5N1Ldt/WrH4rKqvOQilWmEjoF7lGLueS9bqLyEJcXRGUzE60Wpi/Tjb8eicpbUzJE5XVfp4gv0DAjMj2mfEt7EFWEtju511QDBw7Erl27sHjxYshkMsybNw8vvfQSDh48iL59+2oVU6sEqHnz5rh58yYcHBzQtm1b7N69G926dcPBgwdRr149rTpCREREpKqoqAiLFi3CmDFjkJCQoLO4Wv2Ta/To0bhw4QLw5LXzNWvWwMzMDNOmTcP06dN11jkiIqLnka72AqsJjI2NsWzZMp29YKWMq81F/931tXfv3rh69SqSkpLQokULdOzYUZf9IyIieu7wCVjF9OnTB8ePH8eoUaN0FrPS6wDl5+eXupXFs4SGhqqt2vx0d9jCwkLMmTMHhw4dwvXr12FlZYU+ffpgyZIlsLOzq1gfuQ4QkU5x7zB6nuljHaDZh1N1EmeRbyudxDF0X3zxBUJDQzFixAi4urrC0tJSdH7QoEEVjqnVf2ZdLknt4uIi2tvr6e6yeXl5OHfuHObOnYuOHTvi/v37CAoKwqBBg5CUlKRNt4mIiAwCJ0FXzNMXrCIjI9XO6XU3eF0uSW1sbAwbG/U3eKysrNQ2Tlu5ciW6deuG9PR02Nvba9N1IiIiyTH/qZiq2BleqzlUsbGxiImJwYgRI5QjNniyWenVq1crFCstLQ12dnZwcnLCsGHDcP369VLb5uTkQCaT8U0zIiKq1qTYDb66KioqgrGxMX799VedxtVqBEhXS1K7ubkhNjYWrVq1wp07d7Bw4UJ4eHjg0qVLaNiwoahtfn4+Zs6ciXfeeUfrvcbIML0SeUKt7sfglysUo/7QDaLy/d0V3xjPEKnusQU97bOlel/VdX5U5/yozglKPxGlFrOOhR4mVlRQ9gOFqLz8f+r70i3yrRl7LREZKmNjYzg4OOj8LTCtRoCeLkmtqqJLUvv6+uLNN99E+/bt0adPH3z33XcAgC1btojaFRYWYtiwYSgpKcGaNWvKjKlQKPDgwQPRoVAoyryGiIhIn4xkMp0cNcWcOXMQEhKiXHhZF7T6J1lVLEkNAJaWlmjfvj3S0tKUdYWFhRg6dChu3LiBH3/88ZmjP+Hh4Wpvls2eOx9z5oVq3S8iIiJdqkG5i06sWLECv/32G+zs7ODg4KD2Fti5c+cqHLNCCdD169fh5ORUJUtS48nozZUrV9CzZ0/gP8lPWloa4uPj1R6LaRISEoLg4GBRnSA307pPREREJK0hQ4boPGaF1gGSy+XIzMxEkyZNAAB+fn5Yvny5xre4yuOjjz7CwIEDYW9vj+zsbCxcuBAJCQm4ePEiXnjhBbz55ps4d+4cvv32W1hbWyuva9CgAUxNTct9H64DZNi2n09Xq3unM9/yMySqe3vdWPOmqPzwsfgPmf3LQWoxlkeLV4kf2cVBrY2uZeXki8obk/4QldfvvSgqN2/ZWC3G90E9q6h3ZKj0sQ7Qoh9+00mc2a+qz8el8qnQf2bVXOnw4cMIDw/X+ua3b9/G8OHDcffuXTRu3Bjdu3fHmTNn4ODggJs3b+LAgQMAgE6dOomui4+Ph5eXl9b3JSIikpIMfAamjeTkZFy5cgUymQxt27at0LxjVZXKcyu5iDR27txZ6jlHR8dKxyciIqLqLzs7G8OGDcPx48dRr149CIKAnJwc9O7dGzt37kTjxuqjt89SoQRIJpNBpjJzS7VMVFF83GX4lrzXrczzqq+4qz7uAoCp7y8TlT/xEM8XDBsl/pecNj8X317KFJV3JP8pKl/9/Z6oHD6+q6js16lZhe9JpI2asoaPrnzwwQd48OABLl26BGdnZwDA5cuXERAQgClTpmDHjh0VjlnhR2CjRo2Cmdn/TyrOz8/HxIkT1WZj7927t8IdISIiqimYAFXMkSNH8P333yuTHwBo27YtVq9eDW9vb61iVigBCggIEJXfffddrW5KREREVF4lJSUwMTFRqzcxMdF6m4wKJUCbNm3S6iZERET0L04fqZhXXnkFU6dOxY4dO2BnZwc82ZVi2rRpePXVV7WKKena9KGhoWqLFlpbWyMrK0tZvnLlCmbMmIGEhASUlJTAxcUFu3fv5maoRHo0xOWFCrXX9Iq76pyfu6fEmx2HycUL02szB+jQlbui8l//iF+D7+xsLSpzzg9JhY/AKmbVqlUYPHgwHB0d0axZM8hkMqSnp6N9+/bYunWrVjEl35zHxcUF33//vbL8381Vf//9d3h6emLs2LEICwuDlZUVrly5AnNzc4l6S0REVHkcAKqYZs2a4dy5c4iLi8PVq1chCALatm2LPn36aB1T8gTI2Ni41IUUZ8+ejX79+mHp0qXKuubNm+uxd0RERCSVH3/8EZMnT8aZM2dQt25d9O3bV7njRE5ODlxcXLB27VrlDhIVodVmqLqUlpYGOzs7ODk5YdiwYbh+/TrwZMLTd999h1atWsHHxwdNmjSBm5sb9u/fL3WXiYiIKoWboZZPVFQUxo8fr3EfUCsrK0yYMAGRkZFaxZZ0BMjNzQ2xsbFo1aoV7ty5g4ULF8LDwwOXLl1CYWEhcnNzsWTJEixcuBARERE4cuQI3njjDcTHx6NXr15Sdp2oRjEzqfy/lVTX+VGd85P901Fx+YH41dYmdcV7+mlaJ7WwWPw2SNeWjUTlYe2027aHSNc4B6h8Lly4gIiIiFLPe3t749NPP9UqtqQJkK+vr/L/t2/fHu7u7mjRogW2bNmCYcOGAQAGDx6MadOmAU+2xDh16hTWrl1bagKkUCigUChEdYLcTLl2EREREVUPd+7c0fj6+1PGxsb466+/tIot+SOw/7K0tET79u2RlpaGRo0awdjYGG3bthW1cXZ2Rnq6+uaZT4WHh8PKykp0LIvQfr8yIiIiXZPJdHM871544QVcvHix1PO//PILbG1ttYptUAmQQqHAlStXYGtrC1NTU3Tt2hXXrl0TtUlNTYWDQ+m7SIeEhCAnJ0d0TJ8RoofeExERlY8RZDo5nnf9+vXDvHnzkJ+fr3bu8ePHmD9/PgYMGKBVbJkg4Y6jH330EQYOHAh7e3tkZ2dj4cKFSEhIwMWLF+Hg4IB9+/bBz88Pq1evRu/evXHkyBEEBQXh+PHj8PT0LPd98ouq9GMQkQ5kPxA/um796oei8v3EVXruEdVU5nqYHLL6fzd1EmdSD0edxDFUd+7cwUsvvQS5XI7JkyejdevWkMlkuHLlClavXo3i4mKcO3cO1tbW5YgmJukcoNu3b2P48OG4e/cuGjdujO7du+PMmTPKEZ7XX38da9euRXh4OKZMmYLWrVtjz549FUp+iIiIDE1NeHylC9bW1jh16hTef/99hISE4OmYjUwmg4+PD9asWaNV8gOpR4D0hSNARIaPI0BkKPQxArT2tG5GgCa6P98jQP91//59/PbbbxAEAS1btkT9+vUrFU/yhRCJiIiInqV+/fro2rWrzuIxASIig6C6zo/qiE/9rpPLPE9UndSERQwNnUG9BUZERFQTSPka/Jo1a+Dk5ARzc3O4urrip59+KrP9tm3b0LFjR9SqVQu2trYYPXo07t27pzzv5eUFmUymdvTv31/ZJjQ0VO18adtg6QsTICIiIj2TaiuMXbt2ISgoCLNnz8b58+fRs2dP+Pr6lrq+3smTJzFy5EiMHTsWly5dwldffYXExESMGzdO2Wbv3r3IzMxUHr/++ivkcjnefvttUSwXFxdRu7LW99EHJkBEREQ1RGRkJMaOHYtx48bB2dkZUVFRaNasGaKjozW2P3PmDBwdHTFlyhQ4OTnB09MTEyZMQFJSkrJNgwYNYGNjozzi4uJQq1YttQTo6ebnT4/GjRtX+ecti+QJUEZGBt599100bNgQtWrVQqdOnZCcnKw8LwgCQkNDYWdnBwsLC3h5eeHSpUuS9pmIdE8QxIeq+4mrREf9rpPVjiOXs0QHkaHS1SMwhUKBBw8eiA7V7aCeKigoQHJyMry9xfvseXt749SpUxqv8fDwwO3bt3Ho0CEIgoA7d+7g66+/Fj3eUrVhwwYMGzYMlpaWovrSNj+XiqQJ0P3799GjRw+YmJjg8OHDuHz5Mj777DPUq1dP2Wbp0qWIjIzEqlWrkJiYCBsbG/Tt2xcPHz6UsutERERaM9LRoWn7p/Bwzds/3b17F8XFxWrr5lhbWyMrS/M/GDw8PLBt2zb4+fnB1NQUNjY2qFevHlauXKmx/dmzZ/Hrr7+KHpHhP5ufHz16FOvWrUNWVhY8PDxEc4n0TdK3wCIiItCsWTNs2rRJWefo+O+aBoIgICoqCrNnz8Ybb7wBANiyZQusra2xfft2TJgwQZJ+ExERGYKQkBAEBweL6p61+bdMZe6QIAhqdU9dvnwZU6ZMwbx58+Dj44PMzExMnz4dEydOxIYNG9Tab9iwAe3atUO3bt1E9WVtfq7af32RdATowIED6NKlC95++200adIEnTt3xrp165Tnb9y4gaysLNFwnZmZGXr16lXqcB0REZGh0/TWlDaHmZkZ6tatKzpKS4AaNWoEuVyuNtqTnZ1d6mrK4eHh6NGjB6ZPn44OHTooV1/euHEjMjMzRW3z8vKwc+dOtdEfTf67+blUJB0Bun79OqKjoxEcHIxZs2bh7NmzmDJlCszMzDBy5EjlfyRNw3W3bt2SqNdEpI1vL4n/sjx05a6oXFhcIiqv8+tYZrwdW+ao1Q0PWCgqW3XxEpU/GNZJVP6w14vP6DVR1ZBiFSBTU1O4uroiLi4Or7/+urI+Li4OgwcP1nhNXl4ejI3FqYJcLgeejBz91+7du6FQKPDuu+8+sy9PNz/v2bOnlp+m8iRNgEpKStClSxcsXrwYANC5c2dcunQJ0dHRGDlypLJdRYbrFAqF2gQwQW72zCFBIiKi511wcDD8/f3RpUsXuLu7IyYmBunp6Zg4cSLw5JFaRkYGYmNjAQADBw7E+PHjER0drXwEFhQUhG7dusHOzk4Ue8OGDRgyZAgaNmyodl9Nm58/ePAAAQEBevrk6iR9BGZra4u2bduK6pydnZXrETxdJKmiw3WqE8KWRWieEEZERCQFqdYB8vPzQ1RUFBYsWIBOnTrhxIkTOHTokHIT8szMTNGaQKNGjVK+iNSuXTu8/fbbaN26Nfbu3SuKm5qaipMnT2Ls2LEa7/t08/PWrVvjjTfegKmpqWjzcylIOgLUo0cPXLt2TVSXmpqq/EKcnJyUawp07twZePIaX0JCAiIiIjTG1DQhTJBz9IeIiAyHlBthBAYGIjAwUOO5zZs3q9V98MEH+OCDD8qM2apVK7VHYv+1c+dOLXpatSRNgKZNmwYPDw8sXrwYQ4cOxdmzZxETE4OYmBjgyaOvoKAgLF68GC1btkTLli2xePFi1KpVC++8847GmGZm6o+7uBs8UeXc+OuRqOzU2LLUtgCQlZOvVrcj+U9R+a9/xG26tmxUoT691lZ9GX3VOT85ScdF5WgT8V95AS/Zi8qN6phWqA9EVH1JmgB17doV+/btQ0hICBYsWAAnJydERUVhxIgRyjYff/wxHj9+jMDAQNy/fx9ubm44duwY6tSpI2XXiYiItMa9UKUn+W7wAwYMwIABA0o9L5PJEBoaitDQUL32i4iIqKqU9iIP6Y/kCRAREVFNI/k+VMQEiIiebWtKhqg8t2+rMttvTPpDre7q7+Il7zs7i9/kHNZOfU5PRamu86M65+fe6e9F5fDjrUXlEK8WajE5L4jo+cQEiIiISM/4CEx6TICIiIj0jOmP9GRCWS/u60FGRgZmzJiBw4cP4/Hjx2jVqhU2bNgAV1dXtbYTJkxATEwMPv/8cwQFBZX7HnwN3rDtPJ+uVjess73GtqUpLBJvo2BizCfsumQ/YbeonP7FUFE5+4F49fXuId+pxQgf31VU9uvUTKd91OTuwwJxH47/LipvXLBaVK7r2kstxq21b1dR78hQmethaOCrlD/L0erZ3u5kV45WpImkI0D3799Hjx490Lt3bxw+fBhNmjTB77//jnr16qm13b9/P37++We1pbeJiIiqGz4Ck56kCVBERASaNWuGTZs2KescHR3V2mVkZGDy5Mk4evQo+vfvr+deEhER6RbHqKUn6X+DAwcOoEuXLnj77bfRpEkTdO7cGevWrRO1KSkpgb+/P6ZPnw4XFxfJ+kpERETPD0lHgK5fv47o6GgEBwdj1qxZOHv2LKZMmQIzMzPlbvAREREwNjbGlClTpOwqVaF9KdlqdRWdA7QjRfza9cgu0m2wp0v/PCpUq6tnaaL/+z5jpuDy/90UlZu3bKzWRh9zflSpvsKu+pr719+J5/w8SE7QEIVzgEj3+AhMepImQCUlJejSpQsWL14MAOjcuTMuXbqE6OhojBw5EsnJyVi+fDnOnTtX7h8WhUIBhUI8IVOQq+8PRkREJBWmP9KT9BGYra0t2rZtK6pzdnZGevr/vxX0008/ITs7G/b29jA2NoaxsTFu3bqFDz/8UONcIQAIDw+HlZWV6FgWEa6Xz0NERETVg6QjQD169MC1a9dEdampqXBw+P/HF/7+/ujTp4/ovI+PD/z9/TF69GiNMUNCQhAcHCyqE+Qc/SEiIsPBJ2DSk3QdoMTERHh4eCAsLAxDhw7F2bNnMX78eMTExIh2hP8vR0dHBAUFcR0gItKL+l0ni8r3E1dJ1hfSD32sA3Tw4h2dxBnY3rocrUgTSR+Bde3aFfv27cOOHTvQrl07fPLJJ4iKiio1+SEiInoeyGS6OUh7km+FMWDAAAwYMKDc7W/evFmOVkRERESlkzwBIiIiqmlkfA9MckyAiIjKoDrnh3OCSBf4+Ep6XI2biIiIahyOABEREemZER+BSY4JEBERkZ7xEZj0JH8ElpGRgXfffRcNGzZErVq10KlTJyQnJyvP5+bmYvLkyWjatCksLCzg7OyM6OhoSftMRDXX/cRVoqN+18mig4iqB0lHgO7fv48ePXqgd+/eOHz4MJo0aYLff/8d9erVU7aZNm0a4uPjsXXrVjg6OuLYsWMIDAyEnZ0dBg8eLGX3iYiItMIRIOlJmgBFRESgWbNm2LRpk7JOdY+v06dPIyAgAF5eXgCA9957D1988QWSkpKYABERUbXE1+ClJ+kjsAMHDqBLly54++230aRJE3Tu3Bnr1q0TtfH09MSBAweQkZEBQRAQHx+P1NRU+Pj4SNZvIiIiqt4k3QvM3NwcABAcHIy3334bZ8+eRVBQEL744guMHDkSAFBQUIDx48cjNjYWxsbGMDIywvr16+Hv71/u+3AvMCLSF64TVP3pYy+wH67e1UmcV9s00kmcmkjSR2AlJSXo0qULFi9eDADo3LkzLl26hOjoaGUCtGLFCpw5cwYHDhyAg4MDTpw4gcDAQNja2qrtFA8ACoUCCoVCVCfIzWBmxh3hiYjIMPARmPQkfQRma2uLtm3biuqcnZ2Rnp4OAHj8+DFmzZqFyMhIDBw4EB06dMDkyZPh5+eHTz/9VGPM8PBwWFlZiY5lEeF6+TxERETlwc1QpSfpCFCPHj1w7do1UV1qaiocHBwAAIWFhSgsLISRkThPk8vlKCkp0RgzJCQEwcHBojpBztEfIiIi+pekCdC0adPg4eGBxYsXY+jQoTh79ixiYmIQExMDAKhbty569eqF6dOnw8LCAg4ODkhISEBsbCwiIyM1xjQzU3/cxTlAVJMduZwlKr/W1kayvtQE3DuMyoOPwKQnaQLUtWtX7Nu3DyEhIViwYAGcnJwQFRWFESNGKNvs3LkTISEhGDFiBP7++284ODhg0aJFmDhxopRdJyIi0poR8x/JSb4VxoABAzBgwIBSz9vY2IjWCSIiIiKqLMkTICIiopqGj8CkJ+k6QPrCOUBE/2o8Yota3V/bAiTpS02kab8wzgsyLPpYB+hk2n2dxPFsWb/C16xZswbLli1DZmYmXFxcEBUVhZ49e5baftu2bVi6dCnS0tJgZWWF1157DZ9++ikaNmwIANi8eTNGjx6tdt3jx4+V6/1pc9+qJvlmqERERKQfu3btQlBQEGbPno3z58+jZ8+e8PX1VS4/o+rkyZMYOXIkxo4di0uXLuGrr75CYmIixo0bJ2pXt25dZGZmio7/Jj8Vva8+MAEiIiLSM5mOjoqKjIzE2LFjMW7cODg7OyMqKgrNmjVDdHS0xvZnzpyBo6MjpkyZAicnJ3h6emLChAlISkoSfx6ZDDY2NqKjMvfVByZAREREemYkk+nkqIiCggIkJyfD29tbVO/t7Y1Tp05pvMbDwwO3b9/GoUOHIAgC7ty5g6+//hr9+/cXtcvNzYWDgwOaNm2KAQMG4Pz585W6rz5IOgna0dERt27dUqsPDAxEVFQU5syZg0OHDuH69euwsrJCnz59sGTJEtjZ2UnSX6LnAef7SEvTfB+uFUTa0rT9k6b18ADg7t27KC4uhrW1taje2toaWVlZau3xJAHatm0b/Pz8kJ+fj6KiIgwaNAgrV65UtmnTpg02b96M9u3b48GDB1i+fDl69OiBCxcuoGXLllrdVx8kHQFKTEwUPS+Mi4sDALz99tvIy8vDuXPnMHfuXJw7dw579+5FamoqBg0aJGWXiYiIKk1Xj8A0bf8UHl729k8ylZEjQRDU6p66fPkypkyZgnnz5iE5ORlHjhzBjRs3RGvxde/eHe+++y46duyInj17Yvfu3WjVqpUoSaroffVB0hGgxo0bi8pLlixBixYt0KtXL8hkMmVC9NTKlSvRrVs3pKenw97eXs+9JSIi0hEd/d7XtP1TaZt/N2rUCHK5XG3UJTs7W2105qnw8HD06NED06dPBwB06NABlpaW6NmzJxYuXAhbW1u1a4yMjNC1a1ekpaVpfV99MJh1gAoKCrB161YEBweXmhHm5ORAJpOhXr16eu8fEVFV4fYZNY+u1gEq7XGXJqampnB1dUVcXBxef/11ZX1cXBwGDx6s8Zq8vDwYG4tTBblcDjwZwdFEEASkpKSgffv2Wt9XHwwmAdq/fz/++ecfjBo1SuP5/Px8zJw5E++88w7q1q1bahxNz0MFefl/QIiIiJ5XwcHB8Pf3R5cuXeDu7o6YmBikp6crH2mFhIQgIyMDsbGxAICBAwdi/PjxiI6Oho+PDzIzMxEUFIRu3bop5+OGhYWhe/fuaNmyJR48eIAVK1YgJSUFq1evLvd9pWAwCdCGDRvg6+urcYJzYWEhhg0bhpKSEqxZs6bMOOHh4QgLCxPVzZ47H3Pmheq8z0RERNqQauqLn58f7t27hwULFiAzMxPt2rXDoUOH4ODgAADIzMwUrc0zatQoPHz4EKtWrcKHH36IevXq4ZVXXkFERISyzT///IP33nsPWVlZsLKyQufOnXHixAl069at3PeVgkGsBH3r1i00b94ce/fuVRsOKywsxNChQ3H9+nX8+OOPypUnS8MRICKq7vgITFr6WAk68XqOTuJ0bW6lkzg1kUGMAG3atAlNmjRRW1fgafKTlpaG+Pj4ZyY/KOV5KLfCIKLqhHOCSqdpK5H/qsnfDVWM5AlQSUkJNm3ahICAANFEq6KiIrz11ls4d+4cvv32WxQXFytnkDdo0ACmpqYS9pqIiKgSuBeq5CRPgL7//nukp6djzJgxovrbt2/jwIEDAIBOnTqJzsXHx8PLy0uv/SQiItIV7gYvPckTIG9vb42v0jk6Opb6ih0RERFRZRjEJOiqxjlARPQ8UZ0HY9u7n6jc3rmJ2jWeLRuIyhO7O4rKJsbcGvIpfUyCTr75QCdxXB1LXxaGyib5CBAREVFNwwdg0mPKT0RERDUOR4CIiIj0jUNAkpM0AXJ0dMStW7fU6gMDA5VLaF+5cgUzZsxAQkICSkpK4OLigt27d3MzVCKqsVTn/GTGHxKXLzlC1S/OzqKyQz1zUdnX2UZUNpHzAUFV4ltg0pM0AUpMTERxcbGy/Ouvv6Jv3754++23AQC///47PD09MXbsWISFhcHKygpXrlyBubl5GVGJiIgMm1RbYdC/JE2AGjduLCovWbIELVq0QK9evQAAs2fPRr9+/bB06VJlm+bNm+u9n0RERPR8MZgxzoKCAmzduhVjxoyBTCZDSUkJvvvuO7Rq1Qo+Pj5o0qQJ3NzcsH//fqm7SkREVCkyHR2kPYOZBL1//378888/GDVqFAAgOzsbubm5WLJkCRYuXIiIiAgcOXIEb7zxBuLj45WjRERENY3qOj9qc36yb6pdk2UinjqQePtFUbmjTT1R2aFRrcp3lErH7EVyBpMAbdiwAb6+vrCzswOe7BEGAIMHD8a0adOAJ1tinDp1CmvXri01AeJu8ERERPQsBvEI7NatW/j+++8xbtw4ZV2jRo1gbGyMtm3bito6OzsjPT291Fjh4eGwsrISHcsiwqu0/0RERBUh09H/SHsGMQK0adMmNGnSBP3791fWmZqaomvXrrh27ZqobWpqKhwcHEqNFRISguDgYFGdIOfoDxERGQ6+BSY9yROgkpISbNq0CQEBATA2Fndn+vTp8PPzw8svv4zevXvjyJEjOHjwII4fP15qPDMz9cdd3AuMiJ4nqvt6qa7xozrfBwCQcVVUTPilnajctWkdUZlzgOh5J/kjsO+//x7p6ekYM2aM2rnXX38da9euxdKlS9G+fXusX78ee/bsgaenpyR9JSIi0gW+BSY9yUeAvL29UdaG9GPGjNGYHBEREVVbzF4kJ/kIEBEREZG+ST4CREREFTOxu3jdH9V9vVTX+IGGOT8Xv/paVP7k8WBR2VJlTuarbcRrD1Hl8A0u6TEBIiIi0jO+BSY9JkBERER6xvxHepwDRERERDWOpCNARUVFCA0NxbZt25CVlQVbW1uMGjUKc+bMgZHR/+dmgiAgLCwMMTExuH//Ptzc3LB69Wq4uLhI2XUiIsmYGIv/7errbCMqq+7rBQ3r/KjO+fnt229E5XAr8byiFg1rq8V0bMy1grTGISDJSToCFBERgbVr12LVqlW4cuUKli5dimXLlmHlypXKNkuXLkVkZCRWrVqFxMRE2NjYoG/fvnj48KGUXSciItIat8KQnqQJ0OnTpzF48GD0798fjo6OeOutt+Dt7Y2kpCTgyehPVFQUZs+ejTfeeAPt2rXDli1bkJeXh+3bt0vZdSIiIqrGJE2APD098cMPPyA1NRUAcOHCBZw8eRL9+vUDANy4cQNZWVnw9vZWXmNmZoZevXrh1KlTkvWbiIioMmQy3RykPUnnAM2YMQM5OTlo06YN5HI5iouLsWjRIgwfPhwAkJWVBQCwtrYWXWdtbY1bt25J0mciIkNjIhf/W1bTPl6qdarr/KjO+UnetktUnmgsV4s5vqe9qDygrZ2obGbC92xKw9xFepImQLt27cLWrVuxfft2uLi4ICUlBUFBQbCzs0NAQICynUwlzRUEQa3uKYVCAYVCIW4vV98glYiIiGouSdPz6dOnY+bMmRg2bBjat28Pf39/TJs2DeHh4QAAG5v/f7Ph6UjQU9nZ2WqjQk+Fh4fDyspKdCyLCNfDpyEiIion7oYqOUkToLy8POXr7k/J5XKUlJQAAJycnGBjY4O4uDjl+YKCAiQkJMDDw0NjzJCQEOTk5IiO6TNCqviTEBERlR/fApOepI/ABg4ciEWLFsHe3h4uLi44f/48IiMjlbu/y2QyBAUFYfHixWjZsiVatmyJxYsXo1atWnjnnXc0xjQzU3/clV+kl49DRFRtqO7tpbrOj+qcn5+3qL95e/WSl6icOEC839iS/m100FOiqiFpArRy5UrMnTsXgYGByM7Ohp2dHSZMmIB58+Yp23z88cd4/PgxAgMDlQshHjt2DHXq1CkzNhERkaHiG1zSkwmCIEjdiarGESAiorLd/CtPVJ64K0VU1jQCZNVFPAI07DkZATLXw9DA79mPdRKnRRMLncSpibgZKhERqW1rofqKu+rjLgDISTouKu8xMxGV/TuKX4t3aVpXBz19Tkg4ArRmzRosW7YMmZmZcHFxQVRUFHr27Flq+23btmHp0qVIS0uDlZUVXnvtNXz66ado2LAhAGDdunWIjY3Fr7/+CgBwdXXF4sWL0a1bN2WM0NBQhIWFieJaW1urveSkT1ykgYiIqIbYtWsXgoKCMHv2bJw/fx49e/aEr68v0tPTNbY/efIkRo4cibFjx+LSpUv46quvkJiYiHHjxinbHD9+HMOHD0d8fDxOnz4Ne3t7eHt7IyMjQxTLxcUFmZmZyuPixYtV/nnLwgSIiIhIz6R6CywyMhJjx47FuHHj4OzsjKioKDRr1gzR0dEa2585cwaOjo6YMmUKnJyc4OnpiQkTJii3rMKTEaLAwEB06tQJbdq0wbp161BSUoIffvhBFMvY2Bg2NjbKo3Hjxlp8c7rDBIiIiEjPpNgKo6CgAMnJyaLtpQDA29u71O2lPDw8cPv2bRw6dAiCIODOnTv4+uuv0b9//1Lvk5eXh8LCQjRo0EBUn5aWBjs7Ozg5OWHYsGG4fv16xT6Ajkk6B6ioqAihoaHYtm0bsrKyYGtri1GjRmHOnDlq6wMBwIQJExATE4PPP/8cQUFBkvSZiKgmUN3WQvUVd2iY83P3f3Gi8sZXW4nKn3EOkM5p2v1A03IwAHD37l0UFxdr3F6qtLk4Hh4e2LZtG/z8/JCfn4+ioiIMGjQIK1euLLVPM2fOxAsvvIA+ffoo69zc3BAbG4tWrVrhzp07WLhwITw8PHDp0iXlXCJ9k3QEKCIiAmvXrsWqVatw5coVLF26FMuWLdP4xe7fvx8///wz7OzsNMYiIiKqLnS1ELSm3Q+e7qZQ6r0rsL3U5cuXMWXKFMybNw/Jyck4cuQIbty4gYkTJ2psv3TpUuzYsQN79+6Fufm/+8v5+vrizTffRPv27dGnTx989913AIAtW7Zo8e3phqQjQKdPn8bgwYOVQ2mOjo7YsWOH6NkiAGRkZGDy5Mk4evRomcNuRERE1YKO3gILCQlBcHCwqK60vS8bNWoEuVxe4e2levTogenTpwMAOnToAEtLS/Ts2RMLFy6Era2tsu2nn36KxYsX4/vvv0eHDh3K7LelpSXat2+PtLS0cn9WXZN0BMjT0xM//PADUlNTAQAXLlzAyZMn0a9fP2WbkpIS+Pv7Y/r06XBxcZGwt0RERIbFzMwMdevWFR2lJUCmpqZwdXUVbS8FAHFxcaVuL1XallV4MnL01LJly/DJJ5/gyJEj6NKlyzP7rVAocOXKFVECpW+SjgDNmDEDOTk5aNOmDeRyOYqLi7Fo0SIMHz5c2SYiIgLGxsaYMmWKlF0lIqpRzEzEv/Q0LWqous6P6pyfjQtWi8ofen4qKtvVN0dNJdU+XsHBwfD390eXLl3g7u6OmJgYpKenKx9phYSEICMjA7GxscCTLavGjx+P6Oho+Pj4IDMzE0FBQejWrZtySsrSpUsxd+5cbN++HY6OjsoRptq1a6N27f/fYuWjjz7CwIEDYW9vj+zsbCxcuBAPHjxAQECAJN8DpE6Adu3aha1bt2L79u1wcXFBSkoKgoKCYGdnh4CAACQnJ2P58uU4d+5cqc8nVWmaECbINU8IIyIikoJUW2H4+fnh3r17WLBgATIzM9GuXTscOnQIDg4OAIDMzEzRmkCjRo3Cw4cPsWrVKnz44YeoV68eXnnlFURERCjbrFmzBgUFBXjrrbdE95o/fz5CQ0MBALdv38bw4cNx9+5dNG7cGN27d8eZM2eU95WCpFthNGvWDDNnzsSkSZOUdQsXLsTWrVtx9epVREVFITg4WDT8VlxcDCMjIzRr1gw3b95Ui6lptcnZc+djzrzQKv40REQ1y6XbD0TljefFC9+pjgBdOlY9RoD0sRVG+t+KcrR6NvsG/Me9tiQdASrt2WJJSQkAwN/fX/QaHQD4+PjA398fo0eP1hhT04QwQc4fECIiMhzcC1V6kiZAAwcOxKJFi2Bvbw8XFxecP38ekZGRGDNmDACgYcOGausDmJiYwMbGBq1bt9YYU9P6B9wMlYhI91T39lJd50d1zo+L90ei8v3EVVXYO8PG3eClJ2kCtHLlSsydOxeBgYHIzs6GnZ0dJkyYgHnz5knZLSIioirGDEhqks4B0heOABER6d+f9/NF5eoyAqSPOUC37xfoJE7T+qY6iVMTSToCREREVBPxEZj0OAJERESSqN91sqhsKCNC+hgB+vMf3YwA2dXjCJC2uBs8ERER1Th8BEZERKRnfAQmPSZAREREeibVVhj0L0nnABUVFSE0NBTbtm1DVlYWbG1tMWrUKMyZM0e5QGJubi5mzpyJ/fv34969e3B0dMSUKVPw/vvvl/s+nANERGT4VOcEQaJ5QfqYA5SVU6iTODZWJjqJUxNJOgIUERGBtWvXYsuWLXBxcUFSUhJGjx4NKysrTJ06FQAwbdo0xMfHY+vWrXB0dMSxY8cQGBgIOzs7DB48WMruExERaYcDQJKTdBL06dOnMXjwYPTv3x+Ojo5466234O3tjaSkJFGbgIAAeHl5wdHREe+99x46duwoakNERFSdyHR0kPYkTYA8PT3xww8/IDU1FQBw4cIFnDx5Ev369RO1OXDgADIyMiAIAuLj45GamgofHx8Je05ERETVmaSPwGbMmIGcnBy0adMGcrkcxcXFWLRoEYYPH65ss2LFCowfPx5NmzaFsbExjIyMsH79enh6ekrZdSIi0jFN830Mda2gyuJbYNKTNAHatWsXtm7diu3bt8PFxQUpKSkICgqCnZ0dAgICgCcJ0JkzZ3DgwAE4ODjgxIkTCAwMhK2trdpO8QCgUCigUChEdYJcfYNUIiIiqfAtMOlJ+hZYs2bNMHPmTEyaNElZt3DhQmzduhVXr17F48ePYWVlhX379qF///7KNuPGjcPt27dx5MgRtZihoaEICwsT1c2eOx9z5oVW8achIiJdk2IESB9vgf2Vq5vXkxvX5mo22pL0m8vLy1O+7v6UXC5HSUkJAKCwsBCFhYVltlEVEhKC4OBgUZ0g5+gPERER/UvSBGjgwIFYtGgR7O3t4eLigvPnzyMyMhJjxowBANStWxe9evXC9OnTYWFhAQcHByQkJCA2NhaRkZEaY5qZqT/u4jpARFSdPa/zYMpD9bNqWiuorPaGig/ApCdpArRy5UrMnTsXgYGByM7Ohp2dHSZMmIB58+Yp2+zcuRMhISEYMWIE/v77bzg4OGDRokWYOHGilF0nIiLSGidBS4+7wRMRGbiaPAKkSh8jQPqYA3TvkW5+MTW05BwgbfGbIyIi0jO+BSY9JkBERER6xkdg0pN0JWgiIiIiKTABIiIiohpH0knQDx8+xNy5c7Fv3z5kZ2ejc+fOWL58Obp27YrCwkLMmTMHhw4dwvXr12FlZYU+ffpgyZIlsLOzq9B9OAmaiKhm0MWEcX1Mgv7ncbFO4tSzkOskTk0k6QjQuHHjEBcXhy+//BIXL16Et7c3+vTpg4yMDOTl5eHcuXOYO3cuzp07h7179yI1NRWDBg2SsstERET0HJBsBOjx48eoU6cOvvnmG9E2F506dcKAAQOwcOFCtWsSExPRrVs33Lp1C/b29uW+F0eAiIhqhuoyApTzWPNuBhVlZcGZLNqS7C2woqIiFBcXw9zcXFRvYWGBkydParwmJycHMpkM9erV01MviYiIdI9vgUlP0jlAHh4eMDU1xfbt22FtbY0dO3Zg5MiRaNmyJa5duyZqm5+fD09PT7Rp0wZbt26t0H04AkREVDNpMyKkjxGgh/m6GQGqY84RIG1J+s19+eWXEAQBL7zwAszMzLBixQq88847kMvFk7oKCwsxbNgwlJSUYM2aNWXGVCgUePDggehQKBRV/EmIiIioOpE0AWrRogUSEhKQm5uLP/74A2fPnkVhYSGcnJyUbQoLCzF06FDcuHEDcXFxqFu3bpkxw8PDYWVlJTqWRYTr4dMQERGVk0xHB2nNoPYCu3//PpycnLB06VK89957yuQnLS0N8fHxaNy48TNjKBQKtREfQa6+QzwRET3/DPURWK5CN796a5sxC9KWpAnQ0aNHIQgCWrdujd9++w3Tp0+HmZkZTp48CZlMhjfffBPnzp3Dt99+C2tra+V1DRo0gKmpabnvwzlARESEUjZTVU2KmADVDJLuBZaTk4OQkBDcvn0bDRo0wJtvvolFixbBxMQEN2/exIEDB4Anr8b/V3x8PLy8vCTqNRERUeXwLTDpGdQjsKrCESAiIoIBjQDlFejmV28tU2ZS2uL7c0RERFTjMAEiIqIa437iKrWjftfJokMvJHwLbM2aNXBycoK5uTlcXV3x008/ldl+27Zt6NixI2rVqgVbW1uMHj0a9+7dE7XZs2cP2rZtCzMzM7Rt2xb79u2r9H2rGhMgIiIiPZPp6H8VtWvXLgQFBWH27Nk4f/48evbsCV9fX6Snp2tsf/LkSYwcORJjx47FpUuX8NVXXyExMRHjxo1Ttjl9+jT8/Pzg7++PCxcuwN/fH0OHDsXPP/+s9X31gXOAiIioRlMd9Xl8vuL7h1XU40LdxLEwqVh7Nzc3vPTSS4iOjlbWOTs7Y8iQIQgPV18z79NPP0V0dDR+//13Zd3KlSuxdOlS/PHHHwAAPz8/PHjwAIcPH1a2ee2111C/fn3s2LFDq/vqA0eAiIiI9Ewm081Rkd0PCgoKkJycDG9vb1G9t7c3Tp06pfEaDw8P3L59G4cOHYIgCLhz5w6+/vpr0Sbmp0+fVovp4+OjjKnNffVCqCHy8/OF+fPnC/n5+dU6hiH0QRcxDKEPuohhCH0wlBiG0AddxDCEPhhKDEPogy5i6KIPhmr+/PkCANExf/58jW0zMjIEAML//vc/Uf2iRYuEVq1alXqPr776Sqhdu7ZgbGwsABAGDRokFBQUKM+bmJgI27ZtE12zbds2wdTUtFL3rWo1JgHKyckRAAg5OTnVOoYh9EEXMQyhD7qIYQh9MJQYhtAHXcQwhD4YSgxD6IMuYuiiD4YqPz9fyMnJER2lJXpPE5FTp06J6hcuXCi0bt1a4zWXLl0SbG1thaVLlwoXLlwQjhw5IrRv314YM2aMso2JiYmwfft20XVbt24VzMzMtL6vPki6ECIRERFpz8ys/Fs9NWrUCHK5HFlZWaL67Oxs0W4L/xUeHo4ePXpg+vTpAIAOHTrA0tISPXv2xMKFC2FrawsbG5syY2pzX33gHCAiIqIawNTUFK6uroiLixPVx8XFwcPDQ+M1eXl5MDISpwpyuRz4/yk0AAB3d3e1mMeOHVPG1Oa++sARICIiohoiODgY/v7+6NKlC9zd3RETE4P09HRMnDgRABASEoKMjAzExsYCAAYOHIjx48cjOjoaPj4+yMzMRFBQELp16wY7OzsAwNSpU/Hyyy8jIiICgwcPxjfffIPvv/8eJ0+eLPd9JSHZwzc9M4SJeLqIYQh90EUMQ+iDLmIYQh8MJYYh9EEXMQyhD4YSwxD6oIsYz/MkaG2sXr1acHBwEExNTYWXXnpJSEhIUJ4LCAgQevXqJWq/YsUKoW3btoKFhYVga2srjBgxQrh9+7aozVdffSW0bt1aMDExEdq0aSPs2bOnQveVQo1YB4iIiIjovzgHiIiIiGocJkBERERU4zABIiIiohqHCRARERHVOEyAKohzxomIiKq/53YdoNu3byM6OhqnTp1CVlYWZDIZrK2t4eHhgYkTJ6JZs2ZaxTUzM8OFCxfg7Oys8z4TERGRfjyXr8GfPHkSvr6+aNasGby9vWFtbQ1BEJCdnY24uDj88ccfOHz4MHr06FFqjODgYI31y5cvx7vvvouGDRsCACIjI8vsy8qVK5GUlIT+/ftj6NCh+PLLLxEeHo6SkhK88cYbWLBgAYyNDT8PffToEbZv366WUPbo0QPDhw+HpaVlhWM2b94cR48eRcuWLcvV/uDBg0hKSsJrr70Gd3d3/Pjjj/j000+V3+V7772nxSfTv6r4LlHB7/N5+S7Bn02dMoSfTejo+7x9+zbq1auH2rVri+oLCwtx+vRpvPzyy1p9Fnp+PJcJUNeuXeHp6YnPP/9c4/lp06bh5MmTSExMLDWGkZEROnbsiHr16onqExIS0KVLF1haWkImk+HHH38sNcYnn3yCZcuWwdvbG//73/8QFBSEZcuWYdq0aTAyMsLnn3+O999/H2FhYc/8TJX5w3z79m2Ym5ujUaNGAICffvoJa9euRXp6OhwcHDBp0iS4u7uXev3ly5fRt29f5OXloVevXqKEMiEhAZaWljh27Bjatm2r8foVK1ZorA8ODsbHH38MGxsbAMCUKVNK7cPatWvxwQcfoGPHjkhLS8OaNWvw/vvvw8/PD3K5HLGxsQgPD8fUqVNLjfHf76O6fpfQwff5vHyX4M+m2rXV/WcTOvg+MzMzMXjwYCQnJ0Mmk2HEiBFYvXq18ju9c+cO7OzsUFxcXGofqIaQdBnGKmJubi5cvXq11PNXrlwRzM3Ny4yxePFiwcnJSfjhhx9E9cbGxsKlS5fK1Y/mzZsrV8NMSUkR5HK5sHXrVuX5vXv3Ci+++GKZMf7880+ha9eugpGRkSCXy4WRI0cKDx8+VJ7PysoSjIyMyozh7u4uHDp0SBAEQdi/f79gZGQkDBo0SJgxY4bw+uuvCyYmJsLBgwdLvd7Ly0sYNmyYoFAo1M4pFAph+PDhgpeXV6nXy2QyoWnTpoKjo6PokMlkwgsvvCA4OjoKTk5OZX4GZ2dnISYmRhAEQfjxxx8Fc3NzYfXq1crzmzZtEpydncuM8Tx8l4IOvs/n5bsU+LMp8jz8bAo6+D5HjhwpdO/eXUhMTBTi4uKELl26CK6ursLff/8tCE++S5lMVmYfqGZ4LhMgJycnYePGjaWe37hx4zP/EAqCIJw9e1Zo1aqV8OGHHwoFBQWCUMEEyMLCQrh165aybGJiIvz666/K8s2bN4VatWqVGUMXf5jr1Kkj3LhxQxAEQXBzcxOWLFkiOr9y5Uqhc+fOZX6Osj7zxYsXBQsLi1LPv/fee0KnTp2Ey5cvi+or+11evHhRWb5x40aN+C4FHXyfz8t3KfBnU+R5+NkUdPB92tnZCT///LOynJ+fLwwePFjo1KmTcO/evXIlk1QzPJcJ0OrVqwVTU1Nh0qRJwv79+4XTp08LZ86cEfbv3y9MmjRJMDMzE6Kjo8sV6+HDh8LIkSOFDh06CL/88otgYmJS7j/ITk5OwuHDhwVBEITU1FTByMhI2L17t/L8d999Jzg6OpYZQxd/mK2srIQLFy4IgiAITZo0Uf7/p3777bdn/oWyf//+Us/v27dPsLOzK7MP+/btE5o1ayasXLlSWVeRvxSbNm0qnDhxQhAEQcjIyBBkMpnw3XffKc8fP35caNq0aZkxnpfvUqjk9/m8fJcCfzZFnoefTUEH36elpaWQmpoqqissLBSGDBmi/HucCRAJz2sCJAiCsHPnTsHNzU0wNjYWZDKZIJPJBGNjY8HNzU3YtWtXhePt2LFDsLa2FoyMjMr9B3n27NlC48aNhXHjxglOTk5CSEiIYG9vL0RHRwtr164VmjVrJkybNq3MGLr4wzxo0CBh5syZgiAIgo+Pj7B8+XLR+XXr1gktW7Ys9fr58+cLVlZWwrJly4SUlBQhMzNTyMrKElJSUoRly5YJ9evXF8LCwp75fdy+fVt45ZVXhNdee03IzMys0F+KkyZNElq2bCksXLhQ6NatmxAQECC0adNGOHz4sHDkyBGhffv2wpgxY8qM8Tx9l0Ilvs/n5bsU+LMp8jz8bAo6+D7bt28vfP3112r1T79Pe3t7JkAkCM9zAvRUQUGB8Oeffwp//vmn8jGWtv744w9h//79Qm5ubrnaFxUVCQsXLhQGDBigHI7esWOH0KxZM6Fhw4bCqFGjnhlLF3+YL1++LDRs2FAYOXKk8Mknnwi1a9cW3n33XWHRokXCyJEjBTMzM2HTpk1lxliyZIlga2sryGQywcjISDAyMhJkMplga2srRERElOv7EARBKCkpERYvXizY2NgIcrm83H8p5ubmCuPGjRPatWsnTJw4USgoKBCWLVsmmJqaCjKZTPDy8hLu3LlTZozn7bsUtPw+n6fvUuDPptLz8LMp6OD7/PjjjwVvb2+N5woLC4VBgwYxASJBqAkJUHVXnj/M5ZnQ99tvvwnDhg0T6tSpoxwRMzExETw8PIR9+/aVuz/Xr18XTp06JZw6dUq4fv16hT7LfyUlJQlRUVHKOQ7aevz4sfDgwYNytdXVX4y//fab4Ofnp9Pv8vfffy/3dZokJSUJkZGRlfo+Hz16JMl3qYufS4E/m4JggH/OBQm+z8LCQiEnJ6fU80VFRcLNmzcr1Rd6PjyXr8E/T4qKipCXl4e6detqPF9cXIzbt2/DwcGhXPGevtZaUlKCRo0awcTERMc9NlyG/F2amppWeoHNysaoyPWG/F1WR/w+dSszMxPR0dE4efIkMjMzIZfL4eTkhCFDhmDUqFGQy+VSd5EMgOGvwFfDGRsbl/qXIgD8+eefCAsLw8aNG8sV7+nCZv/1xx9/YP78+WXGePz4MZKTk9GgQQO1dUDy8/Oxe/dujBw5ssqu10UMY2NjZGRkYM+ePXB3d0ebNm1w9epVLF++HAqFAu+++y5eeeWVMvsAAFeuXMGZM2fg4eGB1q1b4+rVq1iwYEG5YpS2wGZxcTGWLFlSrgU2KxtDF31Q/bm8f/8+tmzZgrS0NNja2mLUqFHl/mWNJz+Xpqamyhh2dnYYOXLkM1dsP3/+POrVqwcnJycAwNatWxEdHa1c+2by5MkYNmxYlV2vqxjTpk3D0KFD0bNnT43n5XL5M7/PDz74QBlD05/z8tDFwq1Sx0hKSkKfPn3g5OQECwsLpKamYsSIESgoKMBHH32EDRs24OjRo6hTp06Fvx96zkg9BEWVk5KSUunn2c+Kce3aNcHBwUE5L6BXr17Cn3/+qTz/rDdUKnu9rmIcPnxYMDU1FRo0aCCYm5sLhw8fFho3biz06dNHePXVVwVjY2O1dZ90HUMmkwmdOnUSvLy8RIdMJhO6du0qeHl5Cb179y6zD5WNoYs+2NraCnfv3hWEJ49LbGxsBBsbG6Fv375C06ZNBSsrK+HKlStVHqNz587Cjz/+KAhPJvlaWFgIU6ZMEaKjo4WgoCChdu3awoYNG6rsel3FePpz3bJlS2HJkiVCZmZmme2rIsaCBQuEOnXqCG+++aZgY2MjLFmyRGjYsKGwcOFCYfHixULjxo2FefPmGXyMHj16CKGhocryl19+Kbi5uQmCIAh///230KlTJ2HKlCkV+m7o+cQEyMB98803ZR6ff/75M3/xVzbGkCFDhAEDBgh//fWXkJaWJgwcOFBwcnJSrtXxrOSjstfrKoa7u7swe/ZsQXgyGb1+/frCrFmzlOdnzZol9O3bt0pj6GKBzcrG0EUfZDKZciLqsGHDBC8vL+HRo0eC8OQV7gEDBghvvfVWlceoVauW8megc+fOwhdffCE6v23bNqFt27ZVdr2uYshkMuH7778Xpk6dKjRq1EgwMTERBg0aJBw8eFAoLi4u81pdxdDFwq2GEMPCwkI0p664uFgwMTERsrKyBEEQhGPHjpXrdX56/jEBMnBP/1X3dEKjpuNZv/grG6NJkybCL7/8IqoLDAwU7O3thd9///2ZyUdlr9dVjLp16wppaWmC8OQvRWNjYyE5OVl5/uLFi4K1tXWVx6jsApu6iFHZ6/+bvGhKps6cOfPMtW90EaNhw4ZCUlKSIDz5GUlJSRGd/+2338pcvK+y1+sqxn+/i4KCAmHXrl2Cj4+PIJfLBTs7O2HWrFnKn7uqiqGLhVsNIYaDg4Nw8uRJZfnPP/8UZDKZkJeXJwhPFlJ81k4AVDMYSf0Ijspma2uLPXv2oKSkRONx7ty5Ko/x+PFjteftq1evxqBBg9CrVy+kpqZW6fW6ivFfRkZGMDc3F+31VqdOHeTk5FR5jK5duyI5ORl//fUXunTpgosXL0Imk1Wo/5WNoYs+PG2vUCjU5ptYW1vjr7/+qvIYvr6+iI6OBgD06tULX3/9tej87t278eKLL1bZ9bqK8V8mJiYYOnQojhw5guvXr2P8+PHYtm0bWrduXaUxbGxscPnyZQBAWloaiouLlWUAuHTpEpo0aVLmfQ0hxpAhQzBx4kQcOXIE8fHxGDFiBHr16gULCwsAwLVr1/DCCy+U2QeqIaTOwKhsAwcOFObOnVvq+ZSUlGe+Bl/ZGF27dhViY2M1nps0aZJQr169MkdfKnu9rmJ06NBBuTK38GS0prCwUFn+6aefnrlFii5i/Jc2C2zqOoY218tkMqF9+/ZC586dhdq1awt79+4VnU9ISBBeeOGFKo+RkZEhODo6Ci+//LIQHBwsWFhYCJ6ensL48eOFl19+WTA1NRWtIqzr63UV47+jN5qUlJQIx44dq9IYuli41RBiPHz4UBg6dKhyEVwPDw/Rq/xHjx4VrchPNRcTIAN34sQJ0S9cVbm5ucLx48erNMbixYsFX1/fUs+///77ZSZQlb1eVzGio6OFb7/9ttTzs2bNEsaOHVvlMVRVdIHNqohR0etDQ0NFx5EjR0TnP/roI2HYsGFVHkMQBOH+/fvCjBkzhLZt2wrm5uaCqamp4ODgILzzzjtCYmJilV+vixiOjo7KCeHaqmwMXSzcaigxhCfrBv13Q1kiVVwHiIiIiGoczgEiIiKiGocJEBEREdU4TICIiIioxmECRERERDUOEyAiAzRq1CjIZDK147fffqt07M2bN4vWLiIiqom4GSqRgXrttdewadMmUV3jxo0l648mhYWFNW6ncSJ6PnAEiMhAmZmZwcbGRnTI5XIcPHgQrq6uMDc3R/PmzREWFoaioiLldZGRkWjfvj0sLS3RrFkzBAYGIjc3FwBw/PhxjB49Gjk5OcpRpdDQUODJqsz79+8X9aFevXrYvHkzAODmzZuQyWTYvXs3vLy8YG5ujq1btwIANm3aBGdnZ5ibm6NNmzZYs2aNHr8pIqKK4wgQUTVy9OhRvPvuu1ixYgV69uyJ33//He+99x4AYP78+cCTLTpWrFgBR0dH3LhxA4GBgfj444+xZs0aeHh4ICoqCvPmzcO1a9cAALVr165QH2bMmIHPPvsMmzZtgpmZGdatW4f58+dj1apV6Ny5M86fP4/x48fD0tISAQEBVfAtEBHpgNQrMRKRuoCAAEEulwuWlpbK46233hJ69uwpLF68WNT2yy+/FGxtbUuNtXv3bqFhw4bK8qZNmwQrKyu1dgCEffv2ieqsrKyETZs2CcKTTSQBCFFRUaI2zZo1E7Zv3y6q++STTwR3d/cKfmoiIv3hCBCRgerdu7dyk00AsLS0xIsvvojExEQsWrRIWV9cXIz8/Hzk5eWhVq1aiI+Px+LFi3H58mU8ePAARUVFyM/Px6NHj2BpaVnpfnXp0kX5///66y/88ccfGDt2LMaPH6+sLyoqgpWVVaXvRURUVZgAERmopwnPf5WUlCAsLAxvvPGGWntzc3PcunUL/fr1w8SJE/HJJ5+gQYMGOHnyJMaOHYvCwsIy7yeTyaC6M46ma/6bRJWUlAAA1q1bBzc3N1E7uVxezk9KRKR/TICIqpGXXnoJ165dU0uMnkpKSkJRURE+++wzGBn9/zsOu3fvFrUxNTVFcXGx2rWNGzdGZmamspyWloa8vLwy+2NtbY0XXngB169fx4gRI7T8VERE+scEiKgamTdvHgYMGIBmzZrh7bffhpGREX755RdcvHgRCxcuRIsWLVBUVISVK1di4MCB+N///oe1a9eKYjg6OiI3Nxc//PADOnbsiFq1aqFWrVp45ZVXsGrVKnTv3h0lJSWYMWNGuV5xDw0NxZQpU1C3bl34+vpCoVAgKSkJ9+/fR3BwcBV+G0RE2uNr8ETViI+PD7799lvExcWha9eu6N69OyIjI+Hg4AAA6NSpEyIjIxEREYF27dph27ZtCA8PF8Xw8PDAxIkT4efnh8aNG2Pp0qUAgM8++wzNmjXDyy+/jHfeeQcfffQRatWq9cw+jRs3DuvXr8fmzZvRvn179OrVC5s3b4aTk1MVfQtERJUnE1Qf+hMRERE95zgCRERERDUOEyAiIiKqcZgAERERUY3DBIiIiIhqHCZAREREVOMwASIiIqIahwkQERER1ThMgIiIiKjGYQJERERENQ4TICIiIqpxmAARERFRjcMEiIiIiGqc/wP607Ef8gtwrAAAAABJRU5ErkJggg==", "text/plain": [ "RandomForestClassifier(n_estimators=30)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier(n_estimators=30)
DecisionTreeRegressor()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeRegressor()